scispace - formally typeset
Search or ask a question

Showing papers in "Fems Microbiology Reviews in 2022"


Journal ArticleDOI
TL;DR: In this paper, the authors quantify distributions and fluxes of microbial cells between surface habitats and the atmosphere and place special emphasis on long-range pathogen dispersal, and evaluate the potential biological transformation of atmospheric volatile organic compounds and other substrates by airborne microorganisms.
Abstract: Abstract The atmosphere connects habitats across multiple spatial scales via airborne dispersal of microbial cells, propagules and biomolecules. Atmospheric microorganisms have been implicated in a variety of biochemical and biophysical transformations. Here, we review ecological aspects of airborne microorganisms with respect to their dispersal, activity and contribution to climatic processes. Latest studies utilizing metagenomic approaches demonstrate that airborne microbial communities exhibit pronounced biogeography, driven by a combination of biotic and abiotic factors. We quantify distributions and fluxes of microbial cells between surface habitats and the atmosphere and place special emphasis on long-range pathogen dispersal. Recent advances have established that these processes may be relevant for macroecological outcomes in terrestrial and marine habitats. We evaluate the potential biological transformation of atmospheric volatile organic compounds and other substrates by airborne microorganisms and discuss clouds as hotspots of microbial metabolic activity in the atmosphere. Furthermore, we emphasize the role of microorganisms as ice nucleating particles and their relevance for the water cycle via formation of clouds and precipitation. Finally, potential impacts of anthropogenic forcing on the natural atmospheric microbiota via emission of particulate matter, greenhouse gases and microorganisms are discussed.

28 citations


Journal ArticleDOI
TL;DR: In this paper , the authors quantify distributions and fluxes of microbial cells between surface habitats and the atmosphere and place special emphasis on long-range pathogen dispersal, and evaluate the potential biological transformation of atmospheric volatile organic compounds and other substrates by airborne microorganisms.
Abstract: The atmosphere connects habitats across multiple spatial scales via airborne dispersal of microbial cells, propagules and biomolecules. Atmospheric microorganisms have been implicated in a variety of biochemical and biophysical transformations. Here, we review ecological aspects of airborne microorganisms with respect to their dispersal, activity and contribution to climatic processes. Latest studies utilizing metagenomic approaches demonstrate that airborne microbial communities exhibit pronounced biogeography, driven by a combination of biotic and abiotic factors. We quantify distributions and fluxes of microbial cells between surface habitats and the atmosphere and place special emphasis on long-range pathogen dispersal. Recent advances have established that these processes may be relevant for macroecological outcomes in terrestrial and marine habitats. We evaluate the potential biological transformation of atmospheric volatile organic compounds and other substrates by airborne microorganisms and discuss clouds as hotspots of microbial metabolic activity in the atmosphere. Furthermore, we emphasize the role of microorganisms as ice nucleating particles and their relevance for the water cycle via formation of clouds and precipitation. Finally, potential impacts of anthropogenic forcing on the natural atmospheric microbiota via emission of particulate matter, greenhouse gases and microorganisms are discussed.

25 citations


Journal ArticleDOI
TL;DR: In this paper , the authors review how our knowledge of the ecology and within-host diversity of Escherichia coli has progressed in the 137 years since E. coli was first described and discuss some of the outstanding questions yet to be addressed and prospects for future research.
Abstract: Abstract Escherichia coli has a rich history as biology's ‘rock star’, driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance—including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.

23 citations


Journal ArticleDOI
TL;DR: Current knowledge of 3′ end-derived sRNAs is reviewed, which ranges from acting as specialized regulators of single metabolic genes to constituting entire noncoding arms in global stress responses and that this type of cross-regulation between genes at the mRNA level is more pervasive in bacteria than currently appreciated.
Abstract: Abstract Over the past two decades, small noncoding RNAs (sRNAs) that regulate mRNAs by short base pairing have gone from a curiosity to a major class of post-transcriptional regulators in bacteria. They are integral to many stress responses and regulatory circuits, affecting almost all aspects of bacterial life. Following pioneering sRNA searches in the early 2000s, the field quickly focused on conserved sRNA genes in the intergenic regions of bacterial chromosomes. Yet, it soon emerged that there might be another rich source of bacterial sRNAs—processed 3′ end fragments of mRNAs. Several such 3′ end-derived sRNAs have now been characterized, often revealing unexpected, conserved functions in diverse cellular processes. Here, we review our current knowledge of these 3′ end-derived sRNAs—their biogenesis through ribonucleases, their molecular mechanisms, their interactions with RNA-binding proteins such as Hfq or ProQ and their functional scope, which ranges from acting as specialized regulators of single metabolic genes to constituting entire noncoding arms in global stress responses. Recent global RNA interactome studies suggest that the importance of functional 3′ end-derived sRNAs has been vastly underestimated and that this type of cross-regulation between genes at the mRNA level is more pervasive in bacteria than currently appreciated.

23 citations


Journal ArticleDOI
TL;DR: How knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described is reviewed.
Abstract: Abstract Escherichia coli has a rich history as biology's ‘rock star’, driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance—including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.

23 citations


Journal ArticleDOI
TL;DR: The authors performed a systematic review of environmental metatranscriptomes revealing that microbial respiration of O2 at nanomolar concentrations is ubiquitous and drives microbial activity in seemingly anoxic aquatic habitats.
Abstract: Abstract Oxygen (O2) is the ultimate oxidant on Earth and its respiration confers such an energetic advantage that microorganisms have evolved the capacity to scavenge O2 down to nanomolar concentrations. The respiration of O2 at extremely low levels is proving to be common to diverse microbial taxa, including organisms formerly considered strict anaerobes. Motivated by recent advances in O2 sensing and DNA/RNA sequencing technologies, we performed a systematic review of environmental metatranscriptomes revealing that microbial respiration of O2 at nanomolar concentrations is ubiquitous and drives microbial activity in seemingly anoxic aquatic habitats. These habitats were key to the early evolution of life and are projected to become more prevalent in the near future due to anthropogenic-driven environmental change. Here, we summarize our current understanding of aerobic microbial respiration under apparent anoxia, including novel processes, their underlying biochemical pathways, the involved microorganisms, and their environmental importance and evolutionary origin.

15 citations


Journal ArticleDOI
TL;DR: It is revealed that microbial respiration of O2 at nanomolar concentrations is ubiquitous and drives microbial activity in seemingly anoxic aquatic habitats and is projected to become more prevalent in the near future due to anthropogenic-driven environmental change.
Abstract: Abstract Oxygen (O2) is the ultimate oxidant on Earth and its respiration confers such an energetic advantage that microorganisms have evolved the capacity to scavenge O2 down to nanomolar concentrations. The respiration of O2 at extremely low levels is proving to be common to diverse microbial taxa, including organisms formerly considered strict anaerobes. Motivated by recent advances in O2 sensing and DNA/RNA sequencing technologies, we performed a systematic review of environmental metatranscriptomes revealing that microbial respiration of O2 at nanomolar concentrations is ubiquitous and drives microbial activity in seemingly anoxic aquatic habitats. These habitats were key to the early evolution of life and are projected to become more prevalent in the near future due to anthropogenic-driven environmental change. Here, we summarize our current understanding of aerobic microbial respiration under apparent anoxia, including novel processes, their underlying biochemical pathways, the involved microorganisms, and their environmental importance and evolutionary origin.

15 citations


Journal ArticleDOI
TL;DR: The factors contributing to break repair pathway choice are addressed, the concept of biased genome evolution in filamentous pathogens is reviewed, and a model is provided that links DNA double-strand break repair pathways with properties of genome evolution.
Abstract: Abstract DNA double-strand breaks require repair or risk corrupting the language of life. To ensure genome integrity and viability, multiple DNA double-strand break repair pathways function in eukaryotes. Two such repair pathways, canonical non-homologous end joining and homologous recombination, have been extensively studied, while other pathways such as microhomology-mediated end joint and single-strand annealing, once thought to serve as back-ups, now appear to play a fundamental role in DNA repair. Here, we review the molecular details and hierarchy of these four DNA repair pathways, and where possible, a comparison for what is known between animal and fungal models. We address the factors contributing to break repair pathway choice, and aim to explore our understanding and knowledge gaps regarding mechanisms and regulation in filamentous pathogens. We additionally discuss how DNA double-strand break repair pathways influence genome engineering results, including unexpected mutation outcomes. Finally, we review the concept of biased genome evolution in filamentous pathogens, and provide a model, termed Biased Variation, that links DNA double-strand break repair pathways with properties of genome evolution. Despite our extensive knowledge for this universal process, there remain many unanswered questions, for which the answers may improve genome engineering and our understanding of genome evolution.

15 citations


Journal ArticleDOI
TL;DR: It is called for knowledge gaps to be addressed so that a comprehensive picture of how pesticides alter bee gut microbiotas is obtained, and of the functional consequences of these changes, are obtained.
Abstract: Social bee gut microbiotas play key roles in host health and performance. Worryingly, a growing body of literature shows that pesticide exposure can disturb these microbiotas. Most studies examine changes in taxonomic composition in Western honey bee (Apis mellifera) gut microbiotas caused by insecticide exposure. Core bee gut microbiota taxa shift in abundance after exposure but are rarely eliminated, with declines in Bifidobacteriales and Lactobacillus near melliventris abundance being the most common shifts. Pesticide concentration, exposure duration, season and concurrent stressors all influence whether and how bee gut microbiotas are disturbed. Also, the mechanism of disturbance-i.e. whether a pesticide directly affects microbial growth or indirectly affects the microbiota by altering host health-likely affects disturbance consistency. Despite growing interest in this topic, important questions remain unanswered. Specifically, metabolic shifts in bee gut microbiotas remain largely uninvestigated, as do effects of pesticide-disturbed gut microbiotas on bee host performance. Furthermore, few bee species have been studied other than A. mellifera, and few herbicides and fungicides have been examined. We call for these knowledge gaps to be addressed so that we may obtain a comprehensive picture of how pesticides alter bee gut microbiotas, and of the functional consequences of these changes.

14 citations


Journal ArticleDOI
TL;DR: It is proposed that the main pathways environmental intracellular bacteria need to subvert in order to establish the host eukaryotic cell as a replication niche are chromatin remodelling, ubiquitination signalling, and modulation of protein-protein interactions via tandem repeat domains.
Abstract: Intracellular pathogens that are able to thrive in different environments, such as Legionella spp. which preferentially live in protozoa in aquatic environments or environmental Chlamydiae which replicate either within protozoa or a range of animals, possess a plethora of cellular biology tools to influence their eukaryotic host. The host manipulation tools that evolved in the interaction with protozoa, confer these bacteria the capacity to also infect phylogenetically distinct eukaryotic cells, such as macrophages and thus they can also be human pathogens. To manipulate the host cell, bacteria use protein secretion systems and molecular effectors. Although these molecular effectors are encoded in bacteria, they are expressed and function in a eukaryotic context often mimicking or inhibiting eukaryotic proteins. Indeed, many of these effectors have eukaryotic-like domains. In this review we propose that the main pathways environmental intracellular bacteria need to subvert in order to establish the host eukaryotic cell as a replication niche are chromatin remodelling, ubiquitination signalling, and modulation of protein-protein interactions via tandem repeat domains. We then provide mechanistic insight into how these proteins might have evolved as molecular weapons. Finally, we highlight that in environmental intracellular bacteria the number of eukaryotic-like domains and proteins is considerably higher than in intracellular bacteria specialised to an isolated niche, such as obligate intracellular human pathogens. As mimics of eukaryotic proteins are critical components of host pathogen interactions, this distribution of eukaryotic-like domains suggests that the environment has selected them.

13 citations


Journal ArticleDOI
TL;DR: The current understanding of the chemical ecology of T DA, including the environmental niches of TDA-producing bacteria, and the molecular mechanisms governing the function and regulation of Tda are summarized.
Abstract: Abstract Many microbial secondary metabolites have been studied for decades primarily because of their antimicrobial properties. However, several of these metabolites also possess nonantimicrobial functions, both influencing the physiology of the producer and their ecological neighbors. An example of a versatile bacterial secondary metabolite with multiple functions is the tropone derivative tropodithietic acid (TDA). TDA is a broad-spectrum antimicrobial compound produced by several members of the Rhodobacteraceae family, a major marine bacterial lineage, within the genera Phaeobacter, Tritonibacter, and Pseudovibrio. The production of TDA is governed by the mode of growth and influenced by the availability of nutrient sources. The antibacterial effect of TDA is caused by disruption of the proton motive force of target microorganisms and, potentially, by its iron-chelating properties. TDA also acts as a signaling molecule, affecting gene expression in other bacteria, and altering phenotypic traits such as motility, biofilm formation, and antibiotic production in the producer. In microbial communities, TDA-producing bacteria cause a reduction of the relative abundance of closely related species and some fast-growing heterotrophic bacteria. Here, we summarize the current understanding of the chemical ecology of TDA, including the environmental niches of TDA-producing bacteria, and the molecular mechanisms governing the function and regulation of TDA.

Journal ArticleDOI
TL;DR: Fundamental microenvironmental aspects of chronic P. aeruginosa infections are reviewed and their structural organization influences their in vivo microenvironment, which in turn affects the interaction of P.aerug inosa biofilm aggregates with the host immune system.
Abstract: Abstract Pseudomonas aeruginosa is a human pathogen associated with both acute and chronic infections. While intensively studied, the basic mechanisms enabling the long-term survival of P. aeruginosa in the host, despite massive immune system attack and heavy antimicrobial treatment, remain to be identified. We argue that such infections may represent niche invasions by P. aeruginosa that influence the microenvironment by depleting host-derived substrate and activating the immune response. Bacteria embedded in cell aggregates establish a microenvironmental niche, where they endure the initial host response by slowing down their metabolism. This provides stable, lasting growth conditions with a constant, albeit slow supply of substrate and electron acceptors. Under such stable conditions, P. aeruginosa exhibits distinct adaptive traits, where its gene expression pattern reflects a life exposed to continuous attack by the host immune system and antimicrobials. Here, we review fundamental microenvironmental aspects of chronic P. aeruginosa infections and examine how their structural organization influences their in vivo microenvironment, which in turn affects the interaction of P. aeruginosa biofilm aggregates with the host immune system. We discuss how improving our knowledge about the microenvironmental ecology of P. aeruginosa in chronic infections can be used to combat persistent, hard-to-treat bacterial infections.

Journal ArticleDOI
TL;DR: The tropone derivative tropodithietic acid (TDA) is a broad spectrum antimicrobial compound produced by several members of the Rhodobacteraceae family, a major marine bacterial lineage, within the genera Phaeobacter, Tritonibacter, and Pseudovibrio as mentioned in this paper .
Abstract: Abstract Many microbial secondary metabolites have been studied for decades primarily because of their antimicrobial properties. However, several of these metabolites also possess nonantimicrobial functions, both influencing the physiology of the producer and their ecological neighbors. An example of a versatile bacterial secondary metabolite with multiple functions is the tropone derivative tropodithietic acid (TDA). TDA is a broad-spectrum antimicrobial compound produced by several members of the Rhodobacteraceae family, a major marine bacterial lineage, within the genera Phaeobacter, Tritonibacter, and Pseudovibrio. The production of TDA is governed by the mode of growth and influenced by the availability of nutrient sources. The antibacterial effect of TDA is caused by disruption of the proton motive force of target microorganisms and, potentially, by its iron-chelating properties. TDA also acts as a signaling molecule, affecting gene expression in other bacteria, and altering phenotypic traits such as motility, biofilm formation, and antibiotic production in the producer. In microbial communities, TDA-producing bacteria cause a reduction of the relative abundance of closely related species and some fast-growing heterotrophic bacteria. Here, we summarize the current understanding of the chemical ecology of TDA, including the environmental niches of TDA-producing bacteria, and the molecular mechanisms governing the function and regulation of TDA.

Journal ArticleDOI
TL;DR: In this article , the heterogeneity of non-core modules that expand the structural and functional diversity of the Potyvirid proteomes is reviewed, and a family-wide classification of P1 proteinases into the functional Types A and B is provided.
Abstract: Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)-non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.

Journal ArticleDOI
TL;DR: In this paper , the main pathways that environmental intracellular bacteria need to subvert in order to establish the host eukaryotic cell as a replication niche are chromatin remodeling, ubiquitination signalling and modulation of protein-protein interactions via tandem repeat domains.
Abstract: Intracellular pathogens that are able to thrive in different environments, such as Legionella spp. that preferentially live in protozoa in aquatic environments or environmental Chlamydiae that replicate either within protozoa or a range of animals, possess a plethora of cellular biology tools to influence their eukaryotic host. The host manipulation tools that evolved in the interaction with protozoa confer these bacteria the capacity to also infect phylogenetically distinct eukaryotic cells, such as macrophages, and thus they can also be human pathogens. To manipulate the host cell, bacteria use protein secretion systems and molecular effectors. Although these molecular effectors are encoded in bacteria, they are expressed and function in a eukaryotic context often mimicking or inhibiting eukaryotic proteins. Indeed, many of these effectors have eukaryotic-like domains. In this review, we propose that the main pathways that environmental intracellular bacteria need to subvert in order to establish the host eukaryotic cell as a replication niche are chromatin remodelling, ubiquitination signalling and modulation of protein-protein interactions via tandem repeat domains. We then provide mechanistic insight into how these proteins might have evolved. Finally, we highlight that in environmental intracellular bacteria the number of eukaryotic-like domains and proteins is considerably higher than in intracellular bacteria specialized to an isolated niche, such as obligate intracellular human pathogens. As mimics of eukaryotic proteins are critical components of host-pathogen interactions, this distribution of eukaryotic-like domains suggests that the environment has selected them.

Journal ArticleDOI
TL;DR: In this paper , the authors examined the microenvironmental aspects of chronic Pseudomonas aeruginosa infections and examined how their structural organization influences their in vivo microenvironment, which in turn affects the interaction of P. aerruginosa biofilm aggregates with the host immune system.
Abstract: Pseudomonas aeruginosa is a human pathogen associated with both acute and chronic infections. While intensively studied, the basic mechanisms enabling the long-term survival of P. aeruginosa in the host, despite massive immune system attack and heavy antimicrobial treatment, remain to be identified. We argue that such infections may represent niche invasions by P. aeruginosa that influence the microenvironment by depleting host-derived substrate and activating the immune response. Bacteria embedded in cell aggregates establish a microenvironmental niche, where they endure the initial host response by slowing down their metabolism. This provides stable, lasting growth conditions with a constant, albeit slow supply of substrate and electron acceptors. Under such stable conditions, P. aeruginosa exhibits distinct adaptive traits, where its gene expression pattern reflects a life exposed to continuous attack by the host immune system and antimicrobials. Here, we review fundamental microenvironmental aspects of chronic P. aeruginosa infections and examine how their structural organization influences their in vivo microenvironment, which in turn affects the interaction of P. aeruginosa biofilm aggregates with the host immune system. We discuss how improving our knowledge about the microenvironmental ecology of P. aeruginosa in chronic infections can be used to combat persistent, hard-to-treat bacterial infections.

Journal ArticleDOI
TL;DR: The heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes are reviewed and functional connections between non- core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation.
Abstract: Abstract Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.

Journal ArticleDOI
TL;DR: A birds-eye view of the E. coli species is taken, characterizing it from historical, clinical, and genetic perspectives, and advocating streamlining efforts for clinical reporting of ExPEC and emphasizing the pathogenic potential that exists throughout the entire species.
Abstract: Abstract Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli’s infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.

Journal ArticleDOI
TL;DR: It is claimed that effector-mediated microbiota manipulation is fundamental to fungal biology and not only relevant for pathogens of plants and animals but also beneficial in virtually any niche where fungi occur.
Abstract: Abstract Fungi are well-known decomposers of organic matter that thrive in virtually any environment on Earth where they encounter wealths of other microbes. Some fungi evolved symbiotic lifestyles, including pathogens and mutualists, that have mostly been studied in binary interactions with their hosts. However, we now appreciate that such interactions are greatly influenced by the ecological context in which they take place. While establishing their symbioses, fungi not only interact with their hosts but also with the host-associated microbiota. Thus, they target the host and its associated microbiota as a single holobiont. Recent studies have shown that fungal pathogens manipulate the host microbiota by means of secreted effector proteins with selective antimicrobial activity to stimulate disease development. In this review, we discuss the ecological contexts in which such effector-mediated microbiota manipulation is relevant for the fungal lifestyle and argue that this is not only relevant for pathogens of plants and animals but also beneficial in virtually any niche where fungi occur. Moreover, we reason that effector-mediated microbiota manipulation likely evolved already in fungal ancestors that encountered microbial competition long before symbiosis with land plants and mammalian animals evolved. Thus, we claim that effector-mediated microbiota manipulation is fundamental to fungal biology.

Journal ArticleDOI
TL;DR: It is concluded that a fourth wave of the pandemic with the Omicron variant might not be that different from other VoCs, and that the authors may already have the tools in hand to effectively deal with this new VoC.
Abstract: Abstract The genomic diversity of SARS-CoV-2 is the result of a relatively low level of spontaneous mutations introduced during viral replication. With millions of SARS-CoV-2 genome sequences now available, we can begin to assess the overall genetic repertoire of this virus. We find that during 2020, there was a global wave of one variant that went largely unnoticed, possibly because its members were divided over several sublineages (B.1.177 and sublineages B.1.177.XX). We collectively call this Janus, and it was eventually replaced by the Alpha (B.1.1.7) variant of concern (VoC), next replaced by Delta (B.1.617.2), which itself might soon be replaced by a fourth pandemic wave consisting of Omicron (B.1.1.529). We observe that splitting up and redefining variant lineages over time, as was the case with Janus and is now happening with Alpha, Delta and Omicron, is not helpful to describe the epidemic waves spreading globally. Only ∼5% of the 30 000 nucleotides of the SARS-CoV-2 genome are found to be variable. We conclude that a fourth wave of the pandemic with the Omicron variant might not be that different from other VoCs, and that we may already have the tools in hand to effectively deal with this new VoC.

Journal ArticleDOI
TL;DR: The current state of microbiological diagnostics for five genera of human pathogens with a fastidious laboratory lifestyle are described and the (im)possibilities of rapidly developing new in vitro diagnostic tools for diseases of which the causative agents are fastidiously growing and therefore hard to detect are reviewed.
Abstract: Abstract Many of the human infectious pathogens—especially the zoonotic or vector-borne bacteria—are fastidious organisms that are difficult to cultivate because of their strong adaption to the infected host culminating in their near-complete physiological dependence on this environment. These bacterial species exhibit reduced multiplication rates once they are removed from their optimal ecological niche. This fact complicates the laboratory diagnosis of the disease and hinders the detection and further characterization of the underlying organisms, e.g. at the level of their resistance to antibiotics due to their slow growth. Here, we describe the current state of microbiological diagnostics for five genera of human pathogens with a fastidious laboratory lifestyle. For Anaplasma spp., Bartonella spp., Coxiella burnetii, Orientia spp. and Rickettsia spp., we will summarize the existing diagnostic protocols, the specific limitations for implementation of novel diagnostic approaches and the need for further optimization or expansion of the diagnostic armamentarium. We will reflect upon the diagnostic opportunities provided by new technologies including mass spectrometry and next-generation nucleic acid sequencing. Finally, we will review the (im)possibilities of rapidly developing new in vitro diagnostic tools for diseases of which the causative agents are fastidiously growing and therefore hard to detect.

Journal ArticleDOI
TL;DR: A comprehensive view of the diversity, biogeography, ecophysiology, and activity of marine NCDs is provided in this article , where a NCD nifH gene catalog was compiled containing sequences from both PCR-based and PCR-free methods, identifying taxa for future studies.
Abstract: Biological dinitrogen (N2) fixation supplies nitrogen to the oceans, supporting primary productivity, and is carried out by some bacteria and archaea referred to as diazotrophs. Cyanobacteria are conventionally considered to be the major contributors to marine N2 fixation, but non-cyanobacterial diazotrophs (NCDs) have been shown to be distributed throughout ocean ecosystems. However, the biogeochemical significance of marine NCDs has not been demonstrated. This review synthesizes multiple datasets, drawing from cultivation-independent molecular techniques and data from extensive oceanic expeditions, to provide a comprehensive view into the diversity, biogeography, ecophysiology, and activity of marine NCDs. A NCD nifH gene catalog was compiled containing sequences from both PCR-based and PCR-free methods, identifying taxa for future studies. NCD abundances from a novel database of NCD nifH-based abundances were colocalized with environmental data, unveiling distinct distributions and environmental drivers of individual taxa. Mechanisms that NCDs may use to fuel and regulate N2 fixation in response to oxygen and fixed nitrogen availability are discussed, based on a metabolic analysis of recently available Tara Oceans expedition data. The integration of multiple datasets provides a new perspective that enhances understanding of the biology, ecology, and biogeography of marine NCDs and provides tools and directions for future research.

Journal ArticleDOI
TL;DR: An overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors is provided, and the surrounding amino acid environment was shown to play a pivotal role in heme binding.
Abstract: Heme is a versatile molecule that is vital for nearly all cellular life by serving as prosthetic group for various enzymes or as nutritional iron source for diverse microbial species. However, elevated levels of heme molecule are toxic to cells. The complexity of this stimulus has shaped the evolution of diverse heme sensor systems, which are involved in heme-dependent transcriptional regulation in eukaryotes and prokaryotes. The functions of these systems are manifold - ranging from the specific control of heme detoxification or uptake systems to the global integration of heme and iron homeostasis. This review focuses on heme sensor systems, regulating heme homeostasis by transient heme protein interaction. We provide an overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors. Besides the central ligands, the surrounding amino acid environment was shown to play a pivotal role in heme binding. The diversity of heme-regulatory systems therefore illustrates that prediction based on pure sequence information is hardly possible and requires careful experimental validation. Comprehensive understanding of heme-regulated processes is not only important for our understanding of cellular physiology, but also provides a basis for the development of novel antibacterial drugs and metabolic engineering strategies.

Journal ArticleDOI
TL;DR: The genomic diversity of SARS-CoV-2 is the result of a relatively low level of spontaneous mutations introduced during viral replication as discussed by the authors , where only ∼5% of the 30, 000 nucleotides of the SARS CoV2 genome are found to be variable.
Abstract: The genomic diversity of SARS-CoV-2 is the result of a relatively low level of spontaneous mutations introduced during viral replication. With millions of SARS-CoV-2 genome sequences now available, we can begin to assess the overall genetic repertoire of this virus. We find that during 2020, there was a global wave of one variant that went largely unnoticed, possibly because its members were divided over several sublineages (B.1.177 and sublineages B.1.177.XX). We collectively call this Janus, and it was eventually replaced by the Alpha (B.1.1.7) variant of concern (VoC), next replaced by Delta (B.1.617.2), which itself might soon be replaced by a fourth pandemic wave consisting of Omicron (B.1.1.529). We observe that splitting up and redefining variant lineages over time, as was the case with Janus and is now happening with Alpha, Delta and Omicron, is not helpful to describe the epidemic waves spreading globally. Only ∼5% of the 30 000 nucleotides of the SARS-CoV-2 genome are found to be variable. We conclude that a fourth wave of the pandemic with the Omicron variant might not be that different from other VoCs, and that we may already have the tools in hand to effectively deal with this new VoC.

Journal ArticleDOI
TL;DR: In this article , a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome is modulated by transcription, NAPs and topoisomerases.
Abstract: How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organise their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the Nucleoid-Associated Proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes and hence in the phenotypes of daughter cells.

Journal ArticleDOI
TL;DR: In this article , the authors surveyed the recorded limits to microbial iron reduction in a wide range of characterized iron-reducing microorganisms (n = 141), with a focus on pH and temperature.
Abstract: Abstract Microbial iron reduction is a widespread and ancient metabolism on Earth, and may plausibly support microbial life on Mars and beyond. Yet, the extreme limits of this metabolism are yet to be defined. To investigate this, we surveyed the recorded limits to microbial iron reduction in a wide range of characterized iron-reducing microorganisms (n = 141), with a focus on pH and temperature. We then calculated Gibbs free energy of common microbially mediated iron reduction reactions across the pH–temperature habitability space to identify thermodynamic limits. Comparing predicted and observed limits, we show that microbial iron reduction is generally reported at extremes of pH or temperature alone, but not when these extremes are combined (with the exception of a small number of acidophilic hyperthermophiles). These patterns leave thermodynamically favourable combinations of pH and temperature apparently unoccupied. The empty spaces could be explained by experimental bias, but they could also be explained by energetic and biochemical limits to iron reduction at combined extremes. Our data allow for a review of our current understanding of the limits to microbial iron reduction at extremes and provide a basis to test more general hypotheses about the extent to which biochemistry establishes the limits to life.

Journal ArticleDOI
TL;DR: How species from different kingdoms interact in biofilms are described and the functional consequences of such interactions are discussed, highlighting metabolic advances of collaboration among species fromDifferent kingdoms, and advocating that these interactions are of great importance and need to be addressed in future research.
Abstract: The microbial world represents a phenomenal diversity of microorganisms from different kingdoms of life which occupy an impressive set of ecological niches. Most, if not all, microorganisms once colonise a surface develop architecturally complex surface-adhered communities which we refer to as biofilms. They are embedded in polymeric structural scaffolds serve as a dynamic milieu for intercellular communication through physical and chemical signalling. Deciphering microbial ecology of biofilms in various natural or engineered settings has revealed co-existence of microorganisms from all domains of life, including Bacteria, Archaea and Eukarya. The coexistence of these dynamic microbes is not arbitrary, as a highly coordinated architectural setup and physiological complexity show ecological interdependence and myriads of underlying interactions. In this review, we describe how species from different kingdoms interact in biofilms and discuss the functional consequences of such interactions. We highlight metabolic advances of collaboration among species from different kingdoms, and advocate that these interactions are of great importance and need to be addressed in future research. Since trans-kingdom biofilms impact diverse contexts, ranging from complicated infections to efficient growth of plants, future knowledge within this field will be beneficial for medical microbiology, biotechnology, and our general understanding of microbial life in nature.

Journal ArticleDOI
TL;DR: It is argued that the quantitative properties of essentiality can be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings and highlight avenues for targeted antibacterial development.
Abstract: Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions, and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.

Journal ArticleDOI
TL;DR: The role of phosphorus in stimulating cyanobacterial blooms in North American lakes has been investigated in this article , where the authors identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations, and propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic bloom.
Abstract: Abstract David Schindler and his colleagues pioneered studies in the 1970s on the role of phosphorus in stimulating cyanobacterial blooms in North American lakes. Our understanding of the nuances of phosphorus utilization by cyanobacteria has evolved since that time. We review the phosphorus utilization strategies used by cyanobacteria, such as use of organic forms, alternation between passive and active uptake, and luxury storage. While many aspects of physiological responses to phosphorus of cyanobacteria have been measured, our understanding of the critical processes that drive species diversity, adaptation and competition remains limited. We identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations. We propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic cyanobacteria, and ultimately to mitigate the occurrence of blooms.

Journal ArticleDOI
TL;DR: In this paper , a review of bacterial gene essentiality in the context of genetic networks is presented, with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Abstract: Abstract Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.