scispace - formally typeset
Search or ask a question
JournalISSN: 2151-8629

Frontiers in Heat and Mass Transfer 

Global Digital Central
About: Frontiers in Heat and Mass Transfer is an academic journal published by Global Digital Central. The journal publishes majorly in the area(s): Thermal fluids & Fluid mechanics. It has an ISSN identifier of 2151-8629. It is also open access. Over the lifetime, 580 publications have been published receiving 3817 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the pressure sensitive paint (PSPSPP) mass transfer analogy is used to determine the film cooling effectiveness. But the PSP method is not suitable for high-temperature applications, as it does not take into account the conduction error in high thermal gradient regions near the hole.
Abstract: Film cooling is widely used to protect modern gas turbine blades and vanes from the ever increasing inlet temperatures. Film cooling involves a very complex turbulent flow-field, the characterization of which is necessary for reliable and economical design. Several experimental studies have focused on gas turbine blade, vane and end-wall film cooling over the past few decades. Measurements of heat transfer coefficients, film cooling effectiveness values and heat flux ratios using several different experimental methods have been reported. The emphasis of this current review is on the Pressure Sensitive Paint (PSP) mass transfer analogy to determine the film cooling effectiveness. The theoretical basis of the method is presented in detail. Important results in the open literature obtained using the PSP method are presented, discussing parametric effects of blowing ratio, momentum ratio, density ratio, hole shape, surface geometry, free-stream turbulence on flat plates, turbine blades, vanes and end-walls. The PSP method provides very high resolution contours of film cooling effectiveness, without being subject to the conduction error in high thermal gradient regions near the hole.

182 citations

Journal ArticleDOI
TL;DR: In this paper, several different effectiveness definitions have been used in literature are critically reviewed and an energy based effectiveness which can be applied to all types of heat and mass exchangers is defined.
Abstract: Simultaneous heat and mass exchange devices such as cooling towers, humidifiers and dehumidifiers are widely used in the power generation, desalination, air conditioning, and refrigeration industries. For design and rating of these components it is useful to define their performance by an effectiveness. In this paper, several different effectiveness definitions that have been used in literature are critically reviewed and an energy based effectiveness which can be applied to all types of heat and mass exchangers is defined. The validity and the limitations of the various effectiveness definitions are demonstrated by way of several examples including direct and indirect contact, parallel and counterflow heat and mass exchangers. The limiting case of a simple heat exchanger is also discussed. The importance of thermal balancing in minimizing entropy production and its implications for optimization and design of these devices is dealt with in detail. The application of the energy effectiveness to heat-exchanger-like "-NTU correlations is also examined using a detailed numerical model.

107 citations

Journal ArticleDOI
TL;DR: In this paper, a 3D numerical simulation of the vapor-venting process in a rectangular microchannel bounded on one side by a hydrophobic porous membrane for phase-separation is presented.
Abstract: Vapor-venting microchannel heat exchangers are promising because they address the problems of high pressure drop, flow instability, and local dryout that are common in conventional two-phase microchannel heat sinks. We present a 3D numerical simulation of the vapor-venting process in a rectangular microchannel bounded on one side by a hydrophobic porous membrane for phase-separation. The simulation is based on the volume of fluid (VOF) method together with models for interphase mass transfer and capillary force. Simulation shows the vapor-venting mechanism can effectively mitigate the vapor accumulation issue, reduce the pressure drop, and suppress the local dry-out in the microchannel. Pressure surge is observed in the vapor-venting channel. The simulation provides some insight into the design and optimization of vapor-venting heat exchangers.

106 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent advances in near-field radiative energy transfer, particularly in its fundamentals and applications, covering from the essential physics to the most recent theoretical as well as experimental findings that will further promote the fundamental understanding.
Abstract: This article reviews the recent advances in near-field radiative energy transfer, particularly in its fundamentals and applications. When the geometrical features of radiating objects or their separating distances fall into the sub-wavelength range, near-field phenomena such as photon tunneling and surface polaritons begin to play a key role in energy transfer. The resulting heat transfer rate can greatly exceed the blackbody radiation limit by several orders magnitude. This astonishing feature cannot be conveyed by the conventional theory of thermal radiation, generating strong demands in fundamental research that can address thermal radiation in the near field. Important breakthroughs of near-field thermal radiation are presented here, covering from the essential physics that will help better understand the basics of near-field thermal radiation to the most recent theoretical as well as experimental findings that will further promote the fundamental understanding. Applications of near-field thermal radiation in various fields are also discussed, including the radiative property manipulation, near-field thermophotovoltaics, nanoinstrumentation and nanomanufacturing, and thermal rectification.

85 citations

Journal ArticleDOI
Abstract: The significance of an externally applied magnetic field and an imposed negative temperature gradient on the onset of natural convection in a thin horizontal layer of alumina-water nanofluid for various sizes of spherical alumina nanoparticles (e.g., 30nm, 35nm, 40nm, 45nm) and volumetric fractions (e.g., 0.01, 0.02, 0.03, 0.04) is explored and analyzed numerically in this paper. The generalized Buongiorno's mathematical model with the simplified Maxwell's equations and the Oberbeck-Boussinesq approximation were adopted to simulate the two-phase transport phenomena, in which the Brownian motion and thermophoresis aspects are taken into account. Moreover, the rheological behavior of alumina-water nanofluid and related flow are assumed to be Newtonian, incompressible and laminar. Based on the linear stability theory, the perturbed partial differential equations (PDEs) of magnetohydrodynamic convective nanofluid flow are firstly simplified formally using the normal mode analysis technique and secondly converted to a generalized eigenvalue problem considering more realistic boundary conditions, in which the thermal Rayleigh number is the associated eigenvalue. Additionally, the resulting eigenvalue problem was solved numerically using powerful collocation methods, like Chebyshev-Gauss-Lobatto Spectral Method (CGLSM) and Generalized Differential Quadrature Method (GDQM). Furthermore, the thermo-magneto-hydrodynamic stability of the nanofluidic system and the critical size of convection cells are highlighted graphically in terms of the critical thermal Rayleigh and wave numbers, for various values of the magnetic Chandrasekhar number, the volumetric fraction and the diameter of alumina nanoparticles.

72 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202335
202291
202130
202048
201949
201877