scispace - formally typeset
Search or ask a question

Showing papers in "Frontiers in medical technology in 2023"


Journal ArticleDOI
TL;DR: In this paper , the authors investigated the current regulatory scenarios and reimbursement approaches adopted for digital therapeutics and in vitro diagnostics (IVDs) in the US, European countries (Germany, France, and UK), and Australia due to maturity in digital health product adoption and regulatory processes.
Abstract: Objectives Digital therapeutics (DTx) are innovative solutions that use meaningful data to provide evidence-based decisions for the prevention, treatment, and management of diseases. Particular attention is paid to software-based in vitro diagnostics (IVDs). With this point of view, a strong connection between DTx and IVDs is observed. Methods We investigated the current regulatory scenarios and reimbursement approaches adopted for DTx and IVDs. The initial assumption was that countries apply different regulations for the access to the market and adopt different reimbursement systems for both DTx and IVDs. The analysis was limited to the US, European countries (Germany, France, and UK), and Australia due to maturity in digital health product adoption and regulatory processes, and recent regulations related to IVDs. The final aim was to provide a general comparative overview and identify those aspects that should be better addressed to support the adoption and commercialization of DTx and IVDs. Results Many countries regulate DTx as medical devices or software integrated with a medical device, and some have a more specific pathway than others. Australia has more specific regulations classifying software used in IVD. Some EU countries are adopting similar processes to the Digital Health Applications (DiGA) under Germany's Digitale-Versorgung Gesetz (DVG) law, which deems DTx eligible for reimbursement during the fast access pathway. France is working on a fast-track system to make DTx available to patients and reimbursable by the public system. The US retains some coverage through private insurance, federal and state programs like Medicaid and Veterans Affairs, and out-of-pocket spending. The updated Medical Devices Regulation (MDR) and In Vitro Diagnostic Regulation (IVDR) in the EU includes a classification system specifying how software integrated with medical devices, and IVDs specifically must be regulated. Conclusion The outlook for DTx and IVDs is changing as they are becoming more technologically advanced, and some countries are adapting their device classifications depending on specific features. Our analysis showed the complexity of the issue demonstrating how fragmented are regulatory systems for DTx and IVDs. Differences emerged in terms of definitions, terminology, requested evidence, payment approaches and the overall reimbursement landscape. The complexity is expected to have a direct impact on the commercialization of and access to DTx and IVDs. In this scenario, willingness to pay of different stakeholders is a key theme.

4 citations


Journal ArticleDOI
TL;DR: In this paper , a porcine model of traumatic brain injury (TBI) with and without accompanying hemorrhagic shock (HS) was used to determine whether small volume transfusion of hyperoncotic polynitroxylated PEGylated hemoglobin (PNPH) is neuroprotective.
Abstract: Polynitroxylated PEGylated hemoglobin (PNPH, aka SanFlow) possesses superoxide dismutase/catalase mimetic activities that may directly protect the brain from oxidative stress. Stabilization of PNPH with bound carbon monoxide prevents methemoglobin formation during storage and permits it to serve as an anti-inflammatory carbon monoxide donor. We determined whether small volume transfusion of hyperoncotic PNPH is neuroprotective in a porcine model of traumatic brain injury (TBI) with and without accompanying hemorrhagic shock (HS). TBI was produced by controlled cortical impact over the frontal lobe of anesthetized juvenile pigs. Hemorrhagic shock was induced starting 5 min after TBI by 30 ml/kg blood withdrawal. At 120 min after TBI, pigs were resuscitated with 60 ml/kg lactated Ringer's (LR) or 10 or 20 ml/kg PNPH. Mean arterial pressure recovered to approximately 100 mmHg in all groups. A significant amount of PNPH was retained in the plasma over the first day of recovery. At 4 days of recovery in the LR-resuscitated group, the volume of frontal lobe subcortical white matter ipsilateral to the injury was 26.2 ± 7.6% smaller than homotypic contralateral volume, whereas this white matter loss was only 8.6 ± 12.0% with 20-ml/kg PNPH resuscitation. Amyloid precursor protein punctate accumulation, a marker of axonopathy, increased in ipsilateral subcortical white matter by 132 ± 71% after LR resuscitation, whereas the changes after 10 ml/kg (36 ± 41%) and 20 ml/kg (26 ± 15%) PNPH resuscitation were not significantly different from controls. The number of cortical neuron long dendrites enriched in microtubules (length >50 microns) decreased in neocortex by 41 ± 24% after LR resuscitation but was not significantly changed after PNPH resuscitation. The perilesion microglia density increased by 45 ± 24% after LR resuscitation but was unchanged after 20 ml/kg PNPH resuscitation (4 ± 18%). Furthermore, the number with an activated morphology was attenuated by 30 ± 10%. In TBI pigs without HS followed 2 h later by infusion of 10 ml/kg LR or PNPH, PNPH remained neuroprotective. These results in a gyrencephalic brain show that resuscitation from TBI + HS with PNPH protects neocortical gray matter, including dendritic microstructure, and white matter axons and myelin. This neuroprotective effect persists with TBI alone, indicating brain-targeting benefits independent of blood pressure restoration.

2 citations


Journal ArticleDOI
TL;DR: In this paper , the state of the art of computational modelling and simulation (CM&S) in clinical practice has been surveyed and a clear view on the current awareness, actual usage and opinions from the clinicians is needed to identify barriers and opportunities for the future of in silico medicine.
Abstract: In silico medicine describes the application of computational modelling and simulation (CM&S) to the study, diagnosis, treatment or prevention of a disease. Tremendous research advances have been achieved to facilitate the use of CM&S in clinical applications. Nevertheless, the uptake of CM&S in clinical practice is not always timely and accurately reflected in the literature. A clear view on the current awareness, actual usage and opinions from the clinicians is needed to identify barriers and opportunities for the future of in silico medicine. The aim of this study was capturing the state of CM&S in clinics by means of a survey toward the clinical community. Responses were collected online using the Virtual Physiological Human institute communication channels, engagement with clinical societies, hospitals and individual contacts, between 2020 and 2021. Statistical analyses were done with R. Participants (n = 163) responded from all over the world. Clinicians were mostly aged between 35 and 64 years-old, with heterogeneous levels of experience and areas of expertise (i.e., 48% cardiology, 13% musculoskeletal, 8% general surgery, 5% paediatrics). The CM&S terms “Personalised medicine” and “Patient-specific modelling” were the most well-known within the respondents. “In silico clinical trials” and “Digital Twin” were the least known. The familiarity with different methods depended on the medical specialty. CM&S was used in clinics mostly to plan interventions. To date, the usage frequency is still scarce. A well-recognized benefit associated to CM&S is the increased trust in planning procedures. Overall, the recorded level of trust for CM&S is high and not proportional to awareness level. The main barriers appear to be access to computing resources, perception that CM&S is slow. Importantly, clinicians see a role for CM&S expertise in their team in the future. This survey offers a snapshot of the current situation of CM&S in clinics. Although the sample size and representativity could be increased, the results provide the community with actionable data to build a responsible strategy for accelerating a positive uptake of in silico medicine. New iterations and follow-up activities will track the evolution of responses over time and contribute to strengthen the engagement with the medical community.

2 citations


Journal ArticleDOI
TL;DR: In this article , the authors summarized the recent advances in HCC metabolomics studies, including metabolic alterations associated with HCC progression, as well as novel metabolite biomarkers for HCC diagnosis, monitor, and prognostic evaluation.
Abstract: Hepatocellular carcinoma (HCC) remains a global health burden, and is mostly diagnosed at late and advanced stages. Currently, limited and insensitive diagnostic modalities continue to be the bottleneck of effective and tailored therapy for HCC patients. Moreover, the complex reprogramming of metabolic patterns during HCC initiation and progression has been obstructing the precision medicine in clinical practice. As a noninvasive and global screening approach, metabolomics serves as a powerful tool to dynamically monitor metabolic patterns and identify promising metabolite biomarkers, therefore holds a great potential for the development of tailored therapy for HCC patients. In this review, we summarize the recent advances in HCC metabolomics studies, including metabolic alterations associated with HCC progression, as well as novel metabolite biomarkers for HCC diagnosis, monitor, and prognostic evaluation. Moreover, we highlight the application of multi-omics strategies containing metabolomics in biomarker discovery for HCC. Notably, we also discuss the opportunities and challenges of metabolomics in nowadays HCC precision medicine. As technologies improving and metabolite biomarkers discovering, metabolomics has made a major step toward more timely and effective precision medicine for HCC patients.

2 citations


Journal ArticleDOI
TL;DR: In this article , the authors highlight the recent advances in drug delivery using NPs, and their impact on personalized treatment plans for cancer patients, and a focal point of the study is also to highlight how integrating AI, and NPs can help address some of the existing challenges in cancer delivery by conducting a collective survey.
Abstract: Cancer is a life-threatening disease, resulting in nearly 10 million deaths worldwide. There are various causes of cancer, and the prognostic information varies in each patient because of unique molecular signatures in the human body. However, genetic heterogeneity occurs due to different cancer types and changes in the neoplasms, which complicates the diagnosis and treatment. Targeted drug delivery is considered a pivotal contributor to precision medicine for cancer treatments as this method helps deliver medication to patients by systematically increasing the drug concentration on the targeted body parts. In such cases, nanoparticle-mediated drug delivery and the integration of artificial intelligence (AI) can help bridge the gap and enhance localized drug delivery systems capable of biomarker sensing. Diagnostic assays using nanoparticles (NPs) enable biomarker identification by accumulating in the specific cancer sites and ensuring accurate drug delivery planning. Integrating NPs for cancer targeting and AI can help devise sophisticated systems that further classify cancer types and understand complex disease patterns. Advanced AI algorithms can also help in biomarker detection, predicting different NP interactions of the targeted drug, and evaluating drug efficacy. Considering the advantages of the convergence of NPs and AI for targeted drug delivery, there has been significantly limited research focusing on the specific research theme, with most of the research being proposed on AI and drug discovery. Thus, the study's primary objective is to highlight the recent advances in drug delivery using NPs, and their impact on personalized treatment plans for cancer patients. In addition, a focal point of the study is also to highlight how integrating AI, and NPs can help address some of the existing challenges in drug delivery by conducting a collective survey.

2 citations


Journal ArticleDOI
TL;DR: In this article , the authors investigated the dimensional accuracy of patient-specific vascular anatomical models manufactured via digital anatomical segmentation and Fused-Deposition Modelling (FDM), Stereolithography (SLA), Selective Laser Sintering (SLS), and PolyJet 3D printing, respectively.
Abstract: 3D printing enables the rapid manufacture of patient-specific anatomical models that substantially improve patient consultation and offer unprecedented opportunities for surgical planning and training. However, the multistep preparation process may inadvertently lead to inaccurate anatomical representations which may impact clinical decision making detrimentally. Here, we investigated the dimensional accuracy of patient-specific vascular anatomical models manufactured via digital anatomical segmentation and Fused-Deposition Modelling (FDM), Stereolithography (SLA), Selective Laser Sintering (SLS), and PolyJet 3D printing, respectively. All printing modalities reliably produced hand-held patient-specific models of high quality. Quantitative assessment revealed an overall dimensional error of 0.20 ± 3.23%, 0.53 ± 3.16%, −0.11 ± 2.81% and −0.72 ± 2.72% for FDM, SLA, PolyJet and SLS printed models, respectively, compared to unmodified Computed Tomography Angiograms (CTAs) data. Comparison of digital 3D models to CTA data revealed an average relative dimensional error of −0.83 ± 2.13% resulting from digital anatomical segmentation and processing. Therefore, dimensional error resulting from the print modality alone were 0.76 ± 2.88%, + 0.90 ± 2.26%, + 1.62 ± 2.20% and +0.88 ± 1.97%, for FDM, SLA, PolyJet and SLS printed models, respectively. Impact on absolute measurements of feature size were minimal and assessment of relative error showed a propensity for models to be marginally underestimated. This study revealed a high level of dimensional accuracy of 3D-printed patient-specific vascular anatomical models, suggesting they meet the requirements to be used as medical devices for clinical applications.

2 citations


Journal ArticleDOI
TL;DR: In this paper , the effects of radio electric asymmetric conveyer (REAC) neuromodulation on human motor control were reviewed and compared with animal models. And the authors concluded that the information integrated in this review made it possible to consider REAC technology a promising resource for treating motor control dysfunctions.
Abstract: Introduction The radio electric asymmetric conveyer (REAC) is a technology that has the purpose of restoring the cellular polarity triggering the rebalancing of the endogenous bioelectric field, which considering the neurological dysfunctions, affects the neural communication mechanisms. The studies published so far show that the REAC neuromodulation technology has positive effects in treating these dysfunctions, with the principles of endogenous bioelectricity as a basis to achieve these effects. Objectives This study aims to review the literature that explored the effects of REAC protocols on motor control and to identify which mechanisms would be involved. Materials and methods This integrative review considered studies that used REAC as a therapeutic intervention directed at human motor control and experimental research with animals that applied REAC to obtain effects related to motor behavior. Results Ten articles were included, eight clinical and two experimental studies. The clinical studies used the neuro postural optimization (NPO) protocol in 473 patients, of which 53 were healthy subjects, 91 were Alzheimer's disease patients, 128 were patients with atypical swallowing, 12 subjects with neurological diseases, and 189 were without the specification of disease. The experimental studies used the antalgic neuromodulation and neurodegeneration protocols in animal models. Conclusion The information integrated in this review made it possible to consider REAC technology a promising resource for treating motor control dysfunctions. It is possible to infer that the technology promotes functional optimization of neuronal circuits that may be related to more efficient strategies to perform motor tasks.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the authors discuss the role of 3D printing in producing formulations of various dosage forms such as fast and slow releasing, buccal delivery, and localized delivery.
Abstract: Three-dimensional (3D) printing or Additive manufacturing has paved the way for developing and manufacturing pharmaceuticals in a personalized manner for patients with high volume and rare diseases. The traditional pharmaceutical manufacturing process involves the utilization of various excipients to facilitate the stages of blending, mixing, pressing, releasing, and packaging. In some cases, these excipients cause serious side effects to the patients. The 3D printing of pharmaceutical manufacturing avoids the need for excessive excipients. The two major components of a 3D printed tablet or dosage form are polymer matrix and drug component alone. Hence the usage of the 3D printed dosage forms for disease treatment will avoid unwanted side effects and provide higher therapeutic efficacy. With respect to the benefits of the 3D printed pharmaceuticals, the present review was constructed by discussing the role of 3D printing in producing formulations of various dosage forms such as fast and slow releasing, buccal delivery, and localized delivery. The dosage forms are polymeric tablets, nanoparticles, scaffolds, and films employed for treating different diseases.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the insertion of restriction enzyme recognition sequences absent in the native virus into the termini of the adenovirus genome in order to facilitate recovery is described, which can be used to construct or manipulate any portion of the viral genome whose complete genome sequence is known.
Abstract: Adenovirus based vectors are useful tools for vaccine development, gene therapy, and oncolytic virotherapy. Here we describe a novel approach for the genetic engineering of any portion of the adenovirus genome and the reconstruction of either fully replication competent or defective virions. This innovative strategy is rapid, effective and suitable for the manipulation of the entire genome broadening the spectrum of potential applications for the adenovirus system. Our strategy involved insertion of restriction enzyme recognition sequences absent in the native virus into the termini of the adenovirus genome in order to facilitate recovery. These restriction enzyme sites, together with the two inverted terminal repeats and packaging sequences, were synthesized and then subcloned into the pBR322 vector. The remaining internal portion of the adenovirus genome was separated and amplified via PCR into six segments, of which groups of two were joined together by PCR and then subcloned into pBR322 plasmids. During the PCR reaction, an overlap of 30–40 bp was added to the termini of the adjacent fragments, allowing for the subsequent isothermal assembly and correct orientation of all fragments. This approach allows for the genetic modification of each genomic fragment according to the specific research goals, (e.g., deletion, substitution, addition, etc.) To recreate the entire viral genome, the four engineered fragments (each comprised of two adenovirus genomic sections) as well as the pBR322 backbone, were reassembled into a single construct utilizing an isothermal assembly reaction. Finally, the reassembled plasmid containing the entire genome was linearized and transfected into HEK293 cells to recover the complete reconstructed adenoviral vector. Using this approach, we have successfully generated two recombinant reporter adenoviruses, one of human adenovirus serotype 14 and another of serotype 55. The E3 region was replaced by the reporter genes (GFP and Luciferase) to visualize and track the recovery process. Subsequent infection of A549 cells with these reconstructed adenovirus vectors demonstrated that they were replication competent. This method shortens the viral reconstruction process because the one-step isothermal assembly requires less than 4 days, and recombinant adenovirus recovery occurs within 10 days. This new method allows for single or multiple genetic modifications within any portion of the viral genome and can be used to construct or manipulate any adenovirus whose complete genome sequence is known.

1 citations


Journal ArticleDOI
TL;DR: In this paper , a review study summarizes cardiac imaging techniques with a particular interest in MRI and CT, noting each tool's origin, benefits, downfalls, clinical application, and advancement of cardiac imaging in the near future.
Abstract: Cardiac imaging allows physicians to view the structure and function of the heart to detect various heart abnormalities, ranging from inefficiencies in contraction, regulation of volumetric input and output of blood, deficits in valve function and structure, accumulation of plaque in arteries, and more. Commonly used cardiovascular imaging techniques include x-ray, computed tomography (CT), magnetic resonance imaging (MRI), echocardiogram, and positron emission tomography (PET)/single-photon emission computed tomography (SPECT). More recently, even more tools are at our disposal for investigating the heart’s physiology, performance, structure, and function due to technological advancements. This review study summarizes cardiac imaging techniques with a particular interest in MRI and CT, noting each tool’s origin, benefits, downfalls, clinical application, and advancement of cardiac imaging in the near future.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the authors evaluated current knowledge, systems and infrastructure for medical devices regulation and innovation in Uganda using a mixed methods study design using the methods triangulation strategy was employed in this study.
Abstract: Background In many parts of the world, medical devices and the processes of their development are tightly regulated. However, the current regulatory landscape in Uganda like other developing countries is weak and poorly defined, which creates significant barriers to innovation, clinical evaluation, and translation of medical devices. Aim To evaluate current knowledge, systems and infrastructure for medical devices regulation and innovation in Uganda. Methods A mixed methods study design using the methods triangulation strategy was employed in this study. Data of equal weight were collected sequentially. First, a digital structured questionnaire was sent out to innovators to establish individual knowledge and experience with medical device innovation and regulation. Then, a single focus group discussion involving both medical device innovators and regulators to collect data about the current regulatory practices for medical devices in Uganda. Univariate and bivariate analysis was done for the quantitative data to summarize results in graphs and tables. Qualitative data was analyzed using thematic analysis. Ethical review and approval were obtained from the Makerere University School of Biomedical Sciences, Research and Ethics Committee, and the Uganda National Council for Science and Technology. Results A total of 47 innovators responded to the questionnaire. 14 respondents were excluded since they were not medical device innovators. Majority (76%) of individuals had been innovators for more than a year, held a bachelor's degree with a background in Engineering and applied sciences, and worked in an academic research institute. 22 of the 33 medical device innovators had stopped working on their innovations and had stalled at the proof-of-concept stage. Insufficient funding, inadequate technical expertise and confusing regulatory landscape were major challenges to innovation. The two themes that emerged from the discussion were “developing standards for medical devices regulation” and “implementation of regulations in practical processes”. Legal limitations, lengthy processes, and low demand were identified as challenges to developing medical device regulations. Conclusions Efforts have been taken by government to create a pathway for medical device innovations to be translated to the market. More work needs to be done to coordinate efforts among stakeholders to build effective medical device regulations in Uganda.

Journal ArticleDOI
TL;DR: Mostajo-Radji et al. as mentioned in this paper presented an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY), provided the original author(s) and the copyright owners are credited and that the original publication in this journal is cited.
Abstract: COPYRIGHT © 2023 Mostajo-Radji. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Journal ArticleDOI
TL;DR: In this article , a virtual, in-home healthcare monitoring model of care for detection of clinical symptoms and impacts on COVID-19 survivors is presented, which is designed for feasibility in real clinical setting implementation.
Abstract: Background There is increasing evidence that COVID-19 survivors are at increased risk of experiencing a wide range of cardiovascular complications post infection; however, there are no validated models or clear guidelines for remotely monitoring the cardiac health of COVID-19 survivors. Objective This study aims to test a virtual, in-home healthcare monitoring model of care for detection of clinical symptoms and impacts on COVID-19 survivors. It also aims to demonstrate system usability and feasibility. Methods This open label, prospective, descriptive study was conducted in South Western Sydney. Included in the study were patients admitted to the hospital with the diagnosis of COVID-19 between June 2021 and November 2021. Eligible participants after consent were provided with a pulse oximeter to measure oxygen saturation and a S-Patch EX to monitor their electrocardiogram (ECG) for a duration of 3 months. Data was transmitted in real-time to a mobile phone via Bluetooth technology and results were sent to the study team via a cloud-based platform. All the data was reviewed in a timely manner by the investigator team, for post COVID-19 related symptoms, such as reduction in oxygen saturation and arrhythmia. Outcome measure This study was designed for feasibility in real clinical setting implementation, enabling the study team to develop and utilise a virtual, in-home healthcare monitoring model of care to detect post COVID-19 clinical symptoms and impacts on COVID-19 survivors. Results During the study period, 23 patients provided consent for participation. Out of which 19 patients commenced monitoring. Sixteen patients with 81 (73.6%) valid tests were included in the analysis and amongst them seven patients were detected by artificial intelligence to have cardiac arrhythmias but not clinically symptomatic. The patients with arrhythmias had a higher occurrence of supraventricular ectopy, and most of them took at least 2 tests before detection. Notably, patients with arrhythmia had significantly more tests than those without [t-test, t (13) = 2.29, p < 0.05]. Conclusions Preliminary observations have identified cardiac arrhythmias on prolonged cardiac monitoring in 7 out of the first 16 participants who completed their 3 months follow-up. This has allowed early escalation to their treating doctors for further investigations and early interventions.

Journal ArticleDOI
TL;DR: In this paper , Levy, Madrigal and Vaickus present an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) under the assumption that the original author(s) and the copyright owner(s are credited and the original publication in this journal is cited.
Abstract: COPYRIGHT © 2023 Levy, Madrigal and Vaickus. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Journal ArticleDOI
TL;DR: In this article , different options were evaluated in-silico to integrate EIT and stimulation into a single electrode array without affecting spatial selectivity, and the sVNS array was considered to be the simplest due to the lower number of electrodes.
Abstract: Previously developed spatially-selective Vagus Nerve Stimulation (sVNS) allows the targeting of specific nerve fascicles through current steering in a multi-electrode nerve cuff but relies on a trial-and-error strategy to identify the relative orientation between electrodes and fascicles. Fast Neural Electrical Impedance Tomography (FN-EIT) has been recently used for imaging neural traffic in the vagus nerves of pigs in a cross-correlation study with sVNS and MicroCT fascicle tracking. FN-EIT has the potential for allowing targeted sVNS; however, up to now, stimulation and imaging have been performed with separate electrode arrays. In this study, different options were evaluated in-silico to integrate EIT and stimulation into a single electrode array without affecting spatial selectivity. The original pig vagus EIT electrode array geometry was compared with a geometry integrating sVNS and EIT electrodes, and with direct use of sVNS electrodes for EIT imaging. Modelling results indicated that both new designs could achieve image quality similar to the original electrode geometry in all tested markers (e.g., co-localisation error <100 µm). The sVNS array was considered to be the simplest due to the lower number of electrodes. Experimental results from testing evoked EIT imaging of recurrent laryngeal activity using electrodes from the sVNS cuff returned a signal-to-noise ratio similar to our previous study (3.9 ± 2.4 vs. 4.1 ± 1.5, N = 4 nerves from 3 pigs) and a lower co-localisation error (≈14% nerve diameter vs. ≈25%, N = 2 nerves from 2 pigs). Performing FN-EIT and sVNS on the same nerve cuff will facilitate translation to humans, simplify surgery and enable targeted neuromodulation strategies.

Journal ArticleDOI
TL;DR: In this article , a semi-automated workflow for enhanced viewing of computational fluid dynamics results and associated data in an immersive virtual environment (IVE) is presented, which has been successfully completed by novice users in about an hour, demonstrating its ease of use.
Abstract: Researchers conducting computational fluid dynamics (CFD) modeling can spend weeks obtaining imaging data, determining boundary conditions, running simulations and post-processing files. However, results are typically viewed on a 2D display and often at one point in time thus reducing the dynamic and inherently three-dimensional data to a static image. Results from different pathologic states or cases are rarely compared in real-time, and supplementary data are seldom included. Therefore, only a fraction of CFD results are typically studied in detail, and associations between mechanical stimuli and biological response may be overlooked. Virtual and augmented reality facilitate stereoscopic viewing that may foster extraction of more information from CFD results by taking advantage of improved depth cues, as well as custom content development and interactivity, all within an immersive approach. Our objective was to develop a straightforward, semi-automated workflow for enhanced viewing of CFD results and associated data in an immersive virtual environment (IVE). The workflow supports common CFD software and has been successfully completed by novice users in about an hour, demonstrating its ease of use. Moreover, its utility is demonstrated across clinical research areas and IVE platforms spanning a range of cost and development considerations. We are optimistic that this advancement, which decreases and simplifies the steps to facilitate more widespread use of immersive CFD viewing, will foster more efficient collaboration between engineers and clinicians. Initial clinical feedback is presented, and instructional videos, manuals, templates and sample data are provided online to facilitate adoption by the community.

Journal ArticleDOI
TL;DR: In this article , the current landscape of investigational medical devices regulation in Uganda is discussed and nine medical device teams whose devices have gone through the Ugandan regulatory system were interviewed to gain insights into their experiences with the regulatory system.
Abstract: Objective A medical device must undergo rigorous regulatory processes to verify its safety and effectiveness while in use. In low-and middle-income countries like Uganda however, medical device innovators and designers face challenges around bringing a device from ideation to being market-ready. This is mainly attributed to a lack of clear regulatory procedures among other factors. In this paper, we illustrate the current landscape of investigational medical devices regulation in Uganda. Methods Information about the different bodies involved in regulation of medical devices in Uganda was obtained online. Nine medical device teams whose devices have gone through the Ugandan regulatory system were interviewed to gain insights into their experiences with the regulatory system. Interviews focused on the challenges they faced, how they navigated them, and factors that supported their progress towards putting their devices on the market. Results We identified different bodies that are part of the stepwise regulatory pathway of investigational medical devices in Uganda and roles played by each in the regulatory process. Experiences of the medical device teams collected showed that navigation through the regulatory system was different for each team and progress towards market readiness was fuelled by funding, simplicity of device, and mentorship. Conclusion Medical devices regulation exists in Uganda but is characterised by a landscape that is still in development which thereby affects the progress of investigational medical devices.

Journal ArticleDOI
TL;DR: In this article , Kumar, Florindo, and Pasut presented an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) under the assumption that the original author(s) and the copyright owners are credited and the original publication in this journal is cited.
Abstract: COPYRIGHT © 2023 Kumar, Florindo and Pasut. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Journal ArticleDOI
TL;DR: Zhu et al. as discussed by the authors presented an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY), provided the original author(s) and the copyright owners are credited and that the original publication in this journal is cited.
Abstract: COPYRIGHT © 2023 Zhu, Motin and Cui. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Journal ArticleDOI
TL;DR: The UK and Sweden are the first European countries to pilot the feasibility of implementing pull incentives through fully and partially delinked payment models, respectively as discussed by the authors , in order to address the market failures in antimicrobials.
Abstract: Background Antimicrobial resistance (AMR) is a growing threat to global health. With pathogenic bacteria inevitably becoming more resistant to existing antimicrobials, mortality and costs due to AMR will significantly increase over the next few decades if adequate action is not taken. A major challenge in addressing AMR is the lack of financial incentives for manufacturers to invest in developing new antimicrobials. This is partly because current approaches in health technology assessment (HTA) and standard modeling methods fail to capture the full value of antimicrobials. Aim We explore recent reimbursement and payment frameworks, particularly pull incentives, aimed to address the market failures in antimicrobials. We focus on the “subscription-style” payment model recently used in the UK and discuss the learnings for other European countries. Methods A pragmatic literature review was conducted to identify recent initiatives and frameworks between 2012 and 2021, across seven European markets. The National Institute for Health and Care Excellence (NICE) technology appraisals for cefiderocol and for ceftazidime with avibactam were reviewed to evaluate how the new UK model has been applied in practice and identify the key challenges. Conclusion The UK and Sweden are the first European countries to pilot the feasibility of implementing pull incentives through fully and partially delinked payment models, respectively. The NICE appraisals highlighted the complexity and large areas of uncertainty of modeling antimicrobials. If HTA and value-based pricing are part of the future in tackling the market failure in AMR, European-level efforts may be needed to overcome some of the key challenges.

Journal ArticleDOI
TL;DR: In this article , an elderly male patient suffering from limb pain related to ulcers in the lower limbs resulting from peripheral arterial disease (PAD) was evaluated with the aid of infrared thermal imaging before, during and after treatment, he was submitted to treatment with neuromodulation protocols with REAC Technology, Neuro Postural Optimization (NPO) and Neuropsychophysical Optimization in association with traditional treatments for PAD.
Abstract: This case report discusses an elderly male patient (86 years old), suffering from limb pain related to ulcers in the lower limbs resulting from peripheral arterial disease (PAD). Clinically evaluated with the aid of infrared thermal imaging before, during and after treatment, he was submitted to treatment with neuromodulation protocols with REAC Technology, Neuro Postural Optimization (NPO) and Neuropsychophysical Optimization (NPPO) in association with traditional treatments for PAD. It was followed clinically with the aid of infrared thermal imaging of the lower limbs before, during and after treatment. He had a clinical result with a significant reduction in pain and infrared thermal images with complete revascularization of both feet. Evidencing that the treatment of dysfunctional adaptive responses by managing psychological factors often associated with anxiety, depression and stress performed by the REAC NPO and NPPO protocols can be a useful intervention to improve symptoms of patients with lower limb pain and circulatory disturbances.

Journal ArticleDOI
TL;DR: The Artificial Intelligence in Radiology curriculum (AI-RADS) as mentioned in this paper was designed for radiology residents to understand how a machine could apply the underlying concepts to perform clinically relevant tasks in the practice of radiology.
Abstract: Introduction Artificial intelligence and data-driven predictive modeling have become increasingly common tools integrated in clinical practice, heralding a new chapter of medicine in the digital era. While these techniques are poised to affect nearly all aspects of medicine, medical education as an institution has languished behind; this has raised concerns that the current training infrastructure is not adequately preparing future physicians for this changing clinical landscape. Our institution attempted to ameliorate this by implementing a novel artificial intelligence in radiology curriculum, “AI-RADS,” in two different educational formats: a 7-month lecture series and a one-day workshop intensive. Methods The curriculum was structured around foundational algorithms within artificial intelligence. As most residents have little computer science training, algorithms were initially presented as a series of simple observations around a relatable problem (e.g., fraud detection, movie recommendations, etc.). These observations were later re-framed to illustrate how a machine could apply the underlying concepts to perform clinically relevant tasks in the practice of radiology. Secondary lessons in basic computing, such as data representation/abstraction, were integrated as well. The lessons were ordered such that these algorithms were logical extensions of each other. The 7-month curriculum consisted of seven lectures paired with seven journal clubs, resulting in an AI-focused session every two weeks. The workshop consisted of six hours of content modified for the condensed format, with a final integrative activity. Results Both formats of the AI-RADS curriculum were well received by learners, with the 7-month version and workshop garnering 9.8/10 and 4.3/5 ratings, respectively, for overall satisfaction. In both, there were increases in perceived understanding of artificial intelligence. In the 7-lecture course, 6/7 lectures achieved statistically significant (P < 0.02) differences, with the final lecture approaching significance (P = 0.07). In the one-day workshop, there was a significant increase in perceived understanding (P = 0.03). Conclusion As artificial intelligence becomes further enmeshed in clinical practice, it will become critical for physicians to have a basic understanding of how these tools work. Our AI-RADS curriculum demonstrates that it is successful in increasing learner perceived understanding in both an extended and condensed format.

Journal ArticleDOI
TL;DR: In this article , a new system was used to perform radiofrequency ablation with long-term follow-up, which can be used as therapy for a patient population that cannot be operated on.
Abstract: Background Single pulmonary nodules are a common issue in everyday clinical practice. Currently, there are navigation systems with radial-endobronchial ultrasound and electromagnetic navigation for obtaining biopsies. Moreover, rapid on-site evaluation can be used for a quick assessment. These small lesions, even when they do not have any clinically significant information with positron emission tomography, are important to investigate. Case description Radiofrequency and microwave ablation have been evaluated as local treatment techniques. These techniques can be used as therapy for a patient population that cannot be operated on. Currently, one verified operating system is used for endoscopic radiofrequency ablation through the working channel of a bronchoscope. Conclusion In our case, a new system was used to perform radiofrequency ablation with long-term follow-up.

Journal ArticleDOI
TL;DR: In this article, a non-human single center study conducted in the Emergency Department (ED) and on an inpatient Oncology Ward of Walter Reed National Military Medical Center that have followed hygienic practices during the COVID-19 pandemic environment was conducted.
Abstract: Introduction Despite routine implementation of cleaning and disinfection practices in clinical healthcare settings, high-touch environmental surfaces and contaminated equipment often serve as reservoirs for the transmission of pathogens associated with healthcare-associated infections (HAIs). Methods The current study involved the analysis of high-touch surface swabs using a metatranscriptomic sequencing workflow (CSI-Dx™) to assess the efficacy of cleanSURFACES® technology in decreasing microbial burden by limiting re-contamination. This is a non-human single center study conducted in the Emergency Department (ED) and on an inpatient Oncology Ward of Walter Reed National Military Medical Center that have followed hygienic practices during the COVID-19 pandemic environment. Results Although there was no difference in observed microbial richness (two-tailed Wilcoxon test with Holm correction, P > 0.05), beta diversity findings identified shifts in microbial community structure between surfaces from baseline and post-intervention timepoints (Day 1, Day 7, Day 14, and Day 28). Biomarker and regression analyses identified significant reductions in annotated transcripts for various clinically relevant microorganisms' post-intervention, coagulase-negative staphylococci and Malassezia restricta, at ED and Oncology ward, respectively. Additionally, post-intervention samples predominantly consisted of Proteobacteria and to a lesser extent skin commensals and endogenous environmental microorganisms in both departments. Discussion Findings support the value of cleanSURFACES®, when coupled with routine disinfection practices, to effectively impact on the composition of active microbial communities found on high-touch surfaces in two different patient care areas of the hospital (one outpatient and one inpatient) with unique demands and patient-centered practices.

Journal ArticleDOI
TL;DR: In this article , the authors proposed a System for Asymmetric Flow Regulation (SAFR), which combined with a double lumen endobronchial tube (DLT) may offer individualized lung ventilation to the left and right lungs, better matching each lung's mechanics and pathophysiology.
Abstract: Asymmetrical distribution of acute lung injury in mechanically ventilated patients can result in a heterogeneity of gas distribution between different regions, potentially worsening ventilation-perfusion matching. Furthermore, overdistension of healthier, more compliant lung regions can lead to barotrauma and limit the effect of increased PEEP on lung recruitment. We propose a System for Asymmetric Flow Regulation (SAFR) which, combined with a novel double lumen endobronchial tube (DLT) may offer individualized lung ventilation to the left and right lungs, better matching each lung's mechanics and pathophysiology. In this preclinical experimental model, the performance of SAFR on gas distribution in a two-lung simulation system was tested. Our results indicate that SAFR may be a technically feasible and potentially clinically useful although further research is warranted.

Journal ArticleDOI
TL;DR: In this article , the authors investigated the influence of the endothelialization process on the Ni-Ti stent surface through anodization and observed the EC attachment and morphology on the anodized stent strut under both with and without the flow conditions.
Abstract: Background Stent is widely regarded as the main treatment for curing cardiovascular diseases such as stenosis. Previous research has revealed that the damage of endothelial cells (EC), i.e., the components of endothelium, during stent implantation, could lead to severe complications, such as restenosis. To prevent restenosis, enhancements have been made to surface biocompatibility to accelerate the stent endothelialization process. Anodization on the Ni-Ti is a simple and efficient surface modification method to improve the biocompatibility of the Ni-Ti stent surfaces by enhancing the surface hydrophilicity, leading to an increase in the EC activities. The EC activity is known to be affected by the blood flow. Flow change by stent structure may result in EC dysfunctions, thereby leading to restenosis. It is thus essential to investigate the EC activities resulting from the anodization on the Ni-Ti surface under flow conditions. Objective To study the influence of the endothelialization process on the Ni-Ti stent surface through anodization. The EC attachment and morphology on the anodized stent strut were observed under both with and without the flow conditions. Method A parallel plate flow chamber was designed to generate a constant wall shear stress (WSS) to study the flow effect on the EC behavior. The hydrophilicity of the Ni-Ti stent strut surface was enhanced by a TiO2 layer fabricated via anodization. The EC distribution on the surface of the anodized nitinol stent strut was observed after 24 h of static (without flow) and flow exposure (with flow) experiment. Results Under the static condition, the EC density on the surface of the anodized Ni-Ti stent strut was higher compared with the control. Under the flow condition, the enhancement of the EC density on the surface of the stent strut with anodization was reduced. The EC demonstrates a long and thin spindle-shaped morphology under the flow condition. Conclusion Unlike the static condition, the EC is demonstrating a long and thin morphology in response to the flow under the flow condition. By improving the surface hydrophilicity, the anodization could enhance the EC migration onto the strut surface, and subsequently, accelerate the Ni-Ti stent endothelialization process. The improvement of the surface hydrophilicity is lower under the flow conditions when compared with the static conditions.

Journal ArticleDOI
TL;DR: Bootle Blast as discussed by the authors is a low-cost, movement-tracking videogame that can be used at home to encourage upper limb functional exercise tailored to each child's abilities and therapy goals.
Abstract: Access to rehabilitation therapies is a salient and growing issue for children with cerebral palsy (CP) and their families, motivating interest in home-based interventions. Bootle Blast is a low-cost, movement-tracking videogame that can be used at home to encourage upper limb (UL) functional exercise tailored to each child's abilities and therapy goals. The study objectives were to: 1) Establish the extent to which children achieve their self-directed play-time goal over a 12-week intervention, 2) Measure changes in UL motor outcomes, and 3) Explore participants' experiences of using Bootle Blast at home.Mixed methods case series study of four children with hemiplegic cerebral palsy (HCP), each with a participating parent. Participants played Bootle Blast at home for 12 weeks. Study assessments occurred at baseline, post-intervention and four week follow up. A post-intervention interview explored participants' experiences. Game-logs provided play time and progress data.Three of four participants (8-13 yrs., Manual Ability Classification Level I-II) completed the intervention. One dropped out at week 6. Play-time goals were achieved in most weeks, with two of four children surpassing their overall intervention goals. Outcomes varied across the three participants, however consistent improvements were observed on the Canadian Occupational Performance Measure and the Box and Blocks Test. Inductive analysis generated four main themes: 1) Intrinsic motivators fostered play engagement, 2) Virtual play for real-world gains, 3) Therapy on demand (at home), and 4) Shifting the onus from the parent to the game. Integration of qualitative and quantitative data was important for interpreting play patterns/usage and clinical outcomes.This mixed methods study describes a novel videogaming intervention designed for home-rehabilitation for children with HCP and provides preliminary evidence to guide future study design and research.[https://clinicaltrials.gov/ct2/show/NCT04009031?recrs=h&cond=Cerebral+Palsy&cntry=CA&city=Toronto&draw=2&rank=1], identifier [NCT04009031].

Journal ArticleDOI
TL;DR: A review of the history of ex-vivo liver machine preservation can be found in this paper , where the authors provide a brief overview of the major drivers of organ discard (age, ischemia time, steatosis etc.) and how this technology may ultimately revert such a trend.
Abstract: Liver transplantation is a well-established treatment for many with end-stage liver disease. Unfortunately, the increasing organ demand has surpassed the donor supply, and approximately 30% of patients die while waiting for a suitable liver. Clinicians are often forced to consider livers of inferior quality to increase organ donation rates, but ultimately, many of those organs end up being discarded. Extensive testing in experimental animals and humans has shown that ex-vivo machine preservation allows for a more objective characterization of the graft outside the body, with particular benefit for suboptimal organs. This review focuses on the history of the implementation of ex-vivo liver machine preservation and how its enactment may modify our current concept of organ acceptability. We provide a brief overview of the major drivers of organ discard (age, ischemia time, steatosis, etc.) and how this technology may ultimately revert such a trend. We also discuss future directions for this technology, including the identification of new markers of injury and repair and the opportunity for other ex-vivo regenerative therapies. Finally, we discuss the value of this technology, considering current and future donor characteristics in the North American population that may result in a significant organ discard.

Journal ArticleDOI
TL;DR: In this paper , a system for evaluating the ability of Kampo specialists, medical professionals, and students to diagnose the pathological condition "Sho" has been proposed, which is based on a standardized tongue image database.
Abstract: Background In Kampo medicine, tongue examination is used to diagnose the pathological condition “Sho,” but an objective evaluation method for its diagnostic ability has not been established. We constructed a tongue diagnosis electronic learning and evaluation system based on a standardized tongue image database. Purpose This study aims to verify the practicality of this assessment system by evaluating the tongue diagnosis ability of Kampo specialists (KSs), medical professionals, and students. Methods In the first study, we analyzed the answer data of 15 KSs in an 80-question tongue diagnosis test that assesses eight aspects of tongue findings and evaluated the (i) test score, (ii) test difficulty and discrimination index, (iii) diagnostic consistency, and (iv) diagnostic match rate between KSs. In the second study, we administered a 20-question common Kampo test and analyzed the answer data of 107 medical professionals and 56 students that assessed the tongue color discrimination ability and evaluated the (v) correct answer rate, (vi) test difficulty, and (vii) factors related to the correct answer rate. Result In the first study, the average test score was 62.2 ± 10.7 points. Twenty-eight questions were difficult (correct answer rate, <50%), 34 were moderate (50%–85%), and 18 were easy (≥85%). Regarding intrarater reliability, the average diagnostic match rate of five KSs involved in database construction was 0.66 ± 0.08, and as for interrater reliability, the diagnostic match rate between the 15 KSs was 0.52 (95% confidence interval, 0.38–0.65) for Gwet's agreement coefficient 1, and the degree of the match rate was moderate. In the second study, the difficulty level of questions was moderate, with a correct rate of 81.3% for medical professionals and 82.1% for students. The discrimination index was good for medical professionals (0.35) and poor for students (0.06). Among medical professionals, the correct answer group of this question had a significantly higher total score on the Kampo common test than the incorrect answer group (85.3 ± 8.4 points vs. 75.8 ± 11.8 points, p < 0.01). Conclusion This system can objectively evaluate tongue diagnosis ability and has high practicality. Utilizing this system can be expected to contribute to improving learners’ tongue diagnosis ability and standardization of tongue diagnosis.

Journal ArticleDOI
TL;DR: In this article , the authors highlight the importance of a meaningful role for civil society in improving access to well-regulated quality medical products in Africa; to support and be part of a regional social contract approach following the access issues that have been particularly evident during the COVID-19 pandemic.
Abstract: Understanding health as a human right creates a legal obligation on countries to ensure access to timely, acceptable, and affordable health care. We highlight the importance of a meaningful role for civil society in improving access to well-regulated quality medical products in Africa; to support and be part of a regional social contract approach following the access issues that have been particularly evident during the COVID-19 pandemic. We argue that African communities have a clear participatory role as important stakeholders in the regulatory lifecycle. Solidarity is important for a cohesive approach as formal government healthcare infrastructure may be minimal for some countries, with little training of communities available for disease management and insufficient money to fund people to organise and deliver health care. Some of the issues for civil society engagement with multi-stakeholders, and possible mitigating strategies, are tabulated to initiate discussion on facilitators and concerns of governments and other stakeholders for meaningful participation by patients, communities and civil society within a regional regulatory lifecycle approach. Solidarity is called for to address issues of equity, ethics and morality, stigmatisation and mutual empowerment – to sustainably support the region and national governments to develop greater self-sufficiency throughout the regulatory lifecycle. By creating a participatory space, patients, communities and civil society can be invited in with clear missions and supported by well-defined guidance to create a true sense of solidarity and social cohesion. Strong leadership coupled with the political will to share responsibilities in all aspects of this work is key.