scispace - formally typeset
Search or ask a question
JournalISSN: 1071-2690

In Vitro Cellular & Developmental Biology – Animal 

Springer Science+Business Media
About: In Vitro Cellular & Developmental Biology – Animal is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Cell culture & Stem cell. It has an ISSN identifier of 1071-2690. Over the lifetime, 3070 publications have been published receiving 56375 citations. The journal is also known as: In vitro cellular and developmental biology. Animal (Print) & In vitro cellular and developmental biology..


Papers
More filters
Journal ArticleDOI
TL;DR: Flow cytometric and cytogenetic analysis showed that this cell line represents one hyper DNA-diploid stem line with two clonal, evolved cytogenetics sublines, and like the parental C WR22 and CWR22R xenografts, thiscell line expresses prostate specific antigen.
Abstract: A cell line has been derived from a human prostatic carcinoma xenograft, CWR22R. This represents one of very few available cell lines representative of this disease. The cell line is derived from a xenograft that was serially propagated in mice after castration-induced regression and relapse of the parental, androgen-dependent CWR22 xenograft. Flow cytometric and cytogenetic analysis showed that this cell line represents one hyper DNA-diploid stem line with two clonal, evolved cytogenetic sublines. The basic karyotype is close to that of the grandparent xenograft, CWR22, and is relatively simple with 50 chromosomes. In nude mice, the line forms tumors with morphology similar to that of the xenografts, and like the parental CWR22 and CWR22R xenografts, this cell line expresses prostate specific antigen. Growth is weakly stimulated by dihydroxytestosterone and lysates are immunoreactive with androgen receptor antibody by Western blot analysis. Growth is stimulated by epidermal growth factor but is not inhibited by transforming growth factor-beta1.

553 citations

Journal ArticleDOI
TL;DR: A tissue culture system that reliably permits isolation of intact, living, single muscle fibers with associated satellite cells from predominantly fast and slow muscles of rat and mouse is developed.
Abstract: Conventional methods for isolating myogenic (satellite) cells are inadequate when only small quantities of muscle, the tissue in which satellite cells reside, are available. We have developed a tissue culture system that reliably permits isolation of intact, living, single muscle fibers with associated satellite cells from predominantly fast and slow muscles of rat and mouse; maintenance of the isolated fibers in vitro; dissociation, proliferation, and differentiation of satellite cells from each fiber; and removal of the fiber from culture for analysis.

465 citations

Journal ArticleDOI
TL;DR: The system presented here provides a well-defined adhesive environment in which to further investigate the steps involved in angiogenesis, and changes in the geometry of cell spreading can switch endothelial cells among the three major genetic programs that governAngiogenesis—growth, apoptosis and differentiation.
Abstract: Past studies using micropatterned substrates coated with adhesive islands of extracellular matrix revealed that capillary endothelial cells can be geometrically switched between growth and apoptosis. Endothelial cells cultured on single islands larger than 1500 microm2 spread and progressed through the cell cycle, whereas cells restricted to areas less than 500 microm2 failed to extend and underwent apoptosis. The present study addressed whether island geometries that constrained cell spreading to intermediate degrees, neither supporting cell growth nor inducing apoptosis, cause cells to differentiate. Endothelial cells cultured on substrates micropatterned with 10-microm-wide lines of fibronectin formed extensive cell-cell contacts and spread to approximately 1000 microm2. Within 72 h, cells shut off both growth and apoptosis programs and underwent differentiation, resulting in the formation of capillary tube-like structures containing a central lumen. Accumulation of extracellular matrix tendrils containing fibronectin and laminin beneath cells and reorganization of platelet endothelial cell adhesion molecule-positive cell-cell junctions along the lengths of the tubes preceded the formation of these structures. Cells cultured on wider (30-microm) lines also formed cell-cell contacts and aligned their actin cytoskeleton, but these cells spread to larger areas (2200 microm2), proliferated, and did not form tubes. Use of micropatterned substrates revealed that altering the geometry of cell spreading can switch endothelial cells among the three major genetic programs that govern angiogenesis-growth, apoptosis and differentiation. The system presented here provides a well-defined adhesive environment in which to further investigate the steps involved in angiogenesis.

444 citations

Journal ArticleDOI
TL;DR: Three-dimensional skeletal muscle tissue constructs from primary cultures of adult rat myogenic precursor cells were engineered with synthetic tendons at each end to permit the measurement of isometric contractile properties and the myotubes appear to remain arrested in an early developmental state.
Abstract: Our purpose was to engineer three-dimensional skeletal muscle tissue constructs from primary cultures of adult rat myogenic precursor cells, and to measure their excitability and isometric contractile properties. The constructs, termed myooids, were muscle-like in appearance, excitability, and contractile function. The myooids were 12 mm long and ranged in diameter from 0.1 to 1 mm. The myooids were engineered with synthetic tendons at each end to permit the measurement of isometric contractile properties. Within each myooid the myotubes and fibroblasts were supported by an extracellular matrix generated by the cells themselves, and did not require a preexisting scaffold to define the size, shape, and general mechanical properties of the resulting structure. Once formed, the myooids contracted spontaneously at approximately 1 Hz, with peak-to-peak force amplitudes ranging from 3 to 30 microN. When stimulated electrically the myooids contracted to produce force. The myooids (n = 14) had the following mean values: diameter of 0.49 mm, rheobase of 1.0 V/mm, chronaxie of 0.45 ms, twitch force of 215 microN, maximum isometric force of 440 microN, resting baseline force of 181 microN, and specific force of 2.9 kN/m2. The mean specific force was approximately 1% of the specific force generated by control adult rat muscle. Based on the functional data, the myotubes in the myooids appear to remain arrested in an early developmental state due to the absence of signals to promote expression of adult myosin isoforms.

377 citations

Journal ArticleDOI
TL;DR: H9C2 cells showed almost identical hypertrophic responses to those observed in primary cardiomyocytes following stimulation with hypertrophic factors, validates the importance of H9C1 cells as a model for in vitro studies of cardiac hypertrophy and supports current work with human cardiomeocyte cell lines for prospective molecular studies in heart development and disease.
Abstract: Cardiac hypertrophy is a major risk factor for heart failure and associated patient morbidity and mortality. Research investigating the aberrant molecular processes that occur during cardiac hypertrophy uses primary cardiomyocytes from neonatal rat hearts as the standard experimental in vitro system. In addition, some studies make use of the H9C2 rat cardiomyoblast cell line, which has the advantage of being an animal-free alternative; however, the extent to which H9C2 cells can accurately mimic the hypertrophic responses of primary cardiac myocytes has not yet been fully established. To address this limitation, we have directly compared the hypertrophic responses of H9C2 cells with those of primary rat neonatal cardiomyocytes following stimulation with hypertrophic factors. Primary rat neonatal cardiomyocytes and H9C2 cells were cultured in vitro and treated with angiotensin II and endothelin-1 to promote hypertrophic responses. An increase in cellular footprint combined with rearrangement of cytoskeleton and induction of foetal heart genes were directly compared in both cell types using microscopy and real-time rtPCR. H9C2 cells showed almost identical hypertrophic responses to those observed in primary cardiomyocytes. This finding validates the importance of H9C2 cells as a model for in vitro studies of cardiac hypertrophy and supports current work with human cardiomyocyte cell lines for prospective molecular studies in heart development and disease.

339 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202340
202264
202188
202097
201989
201885