scispace - formally typeset
Search or ask a question

Showing papers in "In Vitro Cellular & Developmental Biology – Animal in 2003"


Journal ArticleDOI
TL;DR: In this article, a method for purifying murine brain microvascular endothelial cells (BMEC) for culture is described, which uses limited collagenase-dispase digestion of enriched brain microvessels, followed by immunoisolation of digested, micro-vascular fragments by magnetic beads coated with antibody to platelet-endothelial cell adhesion molecule-1.3.
Abstract: A readily obtainable in vitro paradigm of the blood-brain barrier (BBB) would offer considerable benefits. Toward this end, in this study, we describe a novel method for purifying murine brain microvascular endothelial cells (BMEC) for culture. The method uses limited collagenase-dispase digestion of enriched brain microvessels, followed by immunoisolation of digested, microvascular fragments by magnetic beads coated with antibody to platelet-endothelial cell adhesion molecule-1. When plated onto collagen IV-coated surfaces, these fragments elaborated confluent monolayers of BMEC that expressed, as judged by immunocytochemistry, the adherens junction-associated proteins, VE-cadherin and β-catenin, as well as the tight junction (TJ)-associated proteins, claudin-5, occludin, and zonula occludin-1 (ZO-1), in concentrated fashion along intercellular borders. In contrast, cultures of an immortalized and transformed line of murine brain capillary-derived endothelial cells, bEND.3, displayed diffuse cytoplasmic localization of occludin and ZO-1. This difference in occludin and ZO-1 staining between the two endothelial cell types was also reflected in the extent of association of these proteins with the detergent-resistant cytoskeletal framework (CSK). Although both occludin and ZO-1 largely partitioned with the CSK fraction in BMEC, they were found predominantly in the soluble fraction of bEND.3 cells, and claudin-5 was found associated equally with both fractions in BMEC and bEND.3 cells. Moreover, detergent-extracted cultures of the BMEC retained pronounced immunostaining of occludin and ZO-1, but not claudin-5, along intercellular borders. Because both occludin and ZO-1 are thought to be functionally coupled to the detergent-resistant CSK and high expression of TJs is considered a seminal characteristic of the BBB, these results impart that this method of purifying murine BMEC provides a suitable platform to investigate BBB properties in vitro.

108 citations


Journal ArticleDOI
TL;DR: The use of plant peptones with potential growth factor-like or antiapoptotic bioactivities could improve mammalian cell cultivation in protein-free media while increasing the product biosafety.
Abstract: A strong tendency is currently emerging to remove not only serum but also any product of animal origin from animal cell culture media during production of recombinant proteins. This should facilitate downstream processing and improve biosafety. One way consists in the fortification of protein-free nutritive media with plant protein hydrolysates. To investigate the effects of plant peptones on mammalian cell cultivation and productivity, CHO 320 cells, a clone of CHO K1 cells genetically modified to secrete human interferon-γ (IFN-γ), were first adapted to cultivation in suspension in a protein-free medium. Both cell growth and IFN-γ secretion were found to be equivalent to those reached in serum-containing medium. Eight plant peptones, selected on the basis of their content in free amino acids and oligopeptides, as well as molecular weight distribution of oligopeptides, were tested for their ability to improve culture parameters. These were improved in the presence of three peptones, all having an important fraction of oligopeptides ranging from 1 to 10 kDa and a small proportion of peptides higher than 10 kDa. These peptones do not seem to add significantly to the nutritive potential to basal protein-free nutritive medium. Nevertheless, supplementation of an oligopeptide-enriched wheat peptone improved cell growth by up to 30% and IFN-γ production by up to 60% in shake-flask experiments. These results suggest that the use of plant peptones with potential growth factor-like or antiapoptotic bioactivities could improve mammalian cell cultivation in protein-free media while increasing the product biosafety.

85 citations


Journal ArticleDOI
TL;DR: Seven media were tested to find media that supported high levels of differentiation in primary cultures of human tracheal epithelium, and no key factor in the composition of the partially defined media could be identified, though two of the four media with high concentrations of retinoic acid produced good differentiation.
Abstract: The purpose of the this study was to find media that supported high levels of differentiation in primary cultures of human tracheal epithelium. We tested six previously described, partially defined media and three nondefined media. Cells were grown with an air interface on porous-bottomed inserts, and differentiation was assessed from electrophysiological properties, levels of total protein and deoxyribonucleic acid, and histology. In all media, cells polarized and developed tight junctions, as assessed from transepithelial electrical resistance and were better differentiated at 14 d after plating than at 7 d. The partially defined media described previously by Gray et al. (Am. J. Respir. Cell. Mol. Biol. 14:104-112; 1996) and Matsui et al. (J. Clin. Invest. 102:1125-1131; 1998) and an undefined medium containing Ultroser G serum substitute produced the most highly differentiated epithelial cells, as revealed by a high short-circuit current (I(sc)) and a ciliated, pseudostratified appearance. In other media, cells tended to be either squamous or stratified squamous, with I(sc) levels <25% of those obtained with the three optimal media. Though no key factor in the composition of the partially defined media could be identified, two of the four media with high concentrations of retinoic acid produced good differentiation. In contrast, the two media with the lowest [Ca] (0.11 mM) produced poorly differentiated cells, as did the two partially defined media with low or no retinoic acid concentration.

84 citations


Journal ArticleDOI
TL;DR: A wide range of procedures encompassing many of the key functional features of cancer cells are described in the book, including assays to evaluate elonogenicity, cell proliferation, apoptosis, adhesion, migration, invasion, senescence, angiogenesis, and cell cycle parameters.
Abstract: Since the publication of the first human cancer cell line (Hela cells) about five decades ago, cell culture has become a widely used technology. Our present understanding of the cell and molecular biology of cancers has been derived mainly from the use of cultured cancer cells. Thousands of ceil lines representing a wide spectrum of human cancers have been developed so far. The book, Cancer Cell Culture--Methods and Protocols, introduces the basic concept of cancer cell culture, as well as general cell culture technology, and describes many easy to follow methods for researchers seeking to use cell culture techniques in their laboratories. The book also describes in detail how to characterize and authenticate widely used cell lines by deoxyribonucleic acid fingerprint and cytogenetic methods, how to isolate and develop cell lines from cancers from different tissue origins, and how to eoculture different cell types. In addition, Cancer Cell Culture--Methods and Protocols also introduces how to prevent and recover cell lines from contamination, including bacteria and yeast, and how to detect and eliminate mycoplasma infection. A wide range of procedures encompassing many of the key functional features of cancer cells are also described in the book, including assays to evaluate elonogenicity, cell proliferation, apoptosis, adhesion, migration, invasion, senescence, angiogenesis, and cell cycle parameters, and methods to modify cancer cells, including protocols for transfection, development of drug resistance, immortalization, and establishing xenografts using Matrigels. Overall, Cancer Cell Culture Methods and Protocols is a good and user-friendly resource. Laboratories conducting cancer cell culture or regular tissue cultures will find this book a useful complement to their library and a handy reference book for routing cell culture protocols. Beginners in cell cultures will find this book easy to follow and a source for many needed basic cell culture techniques.

71 citations


Journal ArticleDOI
TL;DR: Assessment of myotube formation, creatine kinase activity, myosin heavy chain–fast, and myogenin demonstrated that the kinetics and extent of myogenic differentiation were superior using this protocol, compared with a commonly used differentiation protocol, in which an extracellular matrix is not provided and the DM contains horse serum.
Abstract: Myogenic cell lines have been used extensively in the study of skeletal muscle development, regeneration, and homeostasis. To induce myogenic differentiation, culture media composed of a wide variety of growth factors and other additives have been used. Because the diversity in these components may modulate the differentiation process differentially, we describe a differentiation protocol that does not require the introduction of any factors to the differentiation media (DM) other than those present in the growth media. By culturing C2C12 skeletal myocytes on a coating of diluted Matrigel, a soluble basement membrane, consisting of collagen IV, laminin, heparan sulfate proteoglycans, and entactin, myogenic differentiation was accomplished by mere serum reduction. Assessment of myotube formation, creatine kinase activity, myosin heavy chain-fast, and myogenin demonstrated that the kinetics and extent of myogenic differentiation were superior using this protocol, compared with a commonly used differentiation protocol, in which an extracellular matrix is not provided and the DM contains horse serum. In addition, the elevated transactivation of a troponin-I promoter reporter construct suggested that myogenesis was enhanced at the transcriptional level. Finally, assessment of genomic deoxyribonucleic acid content revealed that the Matrigel differentiation protocol resulted in lowered proliferation. This protocol may aid studies aimed at elucidating mechanisms of myogenic differentiation, where a homogeneous population of myotubes is preferred.

59 citations


Journal ArticleDOI
TL;DR: The results suggest that SW982 cells are a useful tool for studying the expression of inflammatory cytokine or MMP genes.
Abstract: SW982 cells are characterized by expression of inflammatory cytokine and matrix metalloproteinase (MMP) genes and by their response to dexamethasone at different cell densities. They express genes encoding interleukin (IL)-1β; IL-6; transforming growth factor-β; intercellular adhesion molecule-1; cycloxygenase (COX)-2; and MMPs, including MMP-1, MMP-2, MMP-13, and MT1-MMP; tissue inhibitor of metalloproteinase-2; and a disintegrin and metalloproteinase with thrombospondin motifs-4. Expression of all the genes examined was induced with 2 ng/ml IL-1β at low cell density. The cells, however, failed to express tumor necrosis factor-α, COX-1, and MMP-9, regardless of the presence of IL-1β. Dexamethasone significantly reduced IL-1β, IL-6, COX-2, and MMP-1 expression at high cell density. The results suggest that SW982 cells are a useful tool for studying the expression of inflammatory cytokine or MMP genes.

56 citations


Journal ArticleDOI
TL;DR: It is demonstrated that an appropriate combination of preexisting harvesting methods is suitable to isolate simultaneously the vascular cell types present in a single biopsy sample.
Abstract: The availability of small-diameter blood vessels remains a significant problem in vascular reconstruction. In small-diameter blood vessels, synthetic grafts resulted in low patency; the addition of endothelial cells (EC) has clearly improved this parameter, thereby proving the important contribution of the cellular component to the functionality of any construct. Because the optimal source of cells should be autologous, the adaptation of existing methods for the isolation of all the vascular cell types present in a single and small biopsy sample, thus reducing patient’s morbidity, is a first step toward future clinical applications of any newly developed tissue-engineered blood vessel. This study describes such a cell-harvesting procedure from vein biopsy samples of canine and human origin. For this purpose, we combined preexisting mechanical methods for the isolation of the three vascular cell types: EC by scraping of the endothelium using a scalpel blade, vascular smooth muscle cells (VSMC), and perivascular fibroblasts according to the explant method. Once in culture, cells rapidly grew with the high level of enrichment. The morphological, phenotypical, and functional expected criteria were maintained: EC formed cobblestone colonies, expressed the von Willebrand factor, and incorporated acetylated low-density lipoprotein (LDL); VSMC were elongated and contracted when challenged by vasoactive agents; perivascular fibroblasts formed a mechanically resistant structure. Thus, we demonstrated that an appropriate combination of preexisting harvesting methods is suitable to isolate simultaneously the vascular cell types present in a single biopsy sample. Their functional characteristics indicated that they were suitable for the cellularization of synthetic prosthesis or the reconstruction of functional multicellular autologous organs by tissue engineering.

53 citations


Journal ArticleDOI
TL;DR: Nonradioactive measurement of keratinocyte proliferation in the exponential growth phase in a 96-well format, using a sensitive deoxyribonucleic acid-binding dye to analyze drugs that are pharmacologically active in growth inhibition is described, providing a useful tool for identification of antipsoriatic drugs.
Abstract: Pharmacological treatments for psoriasis are generally based on antiproliferative, anti-inflammatory, or differentiation-modifying activity, or a combination of two or more of these actions. Potentially new drugs for treatment of psoriasis, which act on proliferation, can be identified by screening large compound libraries in a cell proliferation model that allows for characterization of drug effects on in vitro growth of normal human keratinocytes. High-throughput programs based on biological testing of diverse collections of compounds can rapidly identify leads for potential drug candidates in the treatment of psoriasis. In this study, we describe nonradioactive measurement of keratinocyte proliferation in the exponential growth phase in a 96-well format, using a sensitive deoxyribonucleic acid–binding dye to analyze drugs that are pharmacologically active in growth inhibition. Release of lactate dehydrogenase was used to exclude cytotoxic effects. We examined a number of compounds in a test ra...

52 citations


Journal ArticleDOI
TL;DR: It is concluded that osteoblast differentiation is inhibited in culture in a 3D clinostat and this inhibition is mainly due to the suppression of p38 phophorylation.
Abstract: A three-dimensional (3D) clinostat is a device for multidirectional G force generation. By controlled rotation of two axes, a 3D clinostat cancels the cumulative gravity vector at the center of the device and produces an environment with an average of 10−3 G over time. We cultured a human osteoblast cell line in a 3D clinostat and examined the growth properties and differentiation of the cells, including morphology, histological detection of calcification, and mitogen-activated protein kinase (MAPK) cascades. In a normal 1 G condition, alkaline phosphatase (AlPase) activity was detected on day 7 of culture, bone nodules were formed on day 12, and calcium deposits were seen on day 20. In the 3D clinostat, the cells looked larger and bulged. AlPase activity was detected on day 10 of culture. However, neither bone nodules nor calcification was found in the 3D clinostat up to day 21. The expression levels of core-binding factor A1 (a transcription factor for bone formation) and osteocalcin (a bone ma...

49 citations


Journal ArticleDOI
TL;DR: It is found that hepatocyte spheroids could be cultured in a HARV to retain cellular and physiological properties of the intact liver, including drug-metabolizing enzyme activities, plasma protein production, and long-term maintenance of viability and cellular function.
Abstract: Rat hepatocytes were cultured initially as spheroids on culture plates and then transferred into a rotating wall vessel (high-aspect ratio vessel [HARV]) for further culturing. Morphological evaluation based on electron microscopy showed that hepatocyte spheroids cultured for 30 d in the HARV had a compact structure with tight cell-cell junctions, numerous smooth and rough endoplasmic reticulum, intact mitochondria, and bile canaliculi lined with microvilli. The viability and differentiated properties of the hepatocytes cultured in the HARV were further substantiated by the presence of both phase I oxidation and phase II conjugation drug-metabolizing enzyme activities, as well as albumin synthesis. Homogenates prepared from freshly isolated hepatocytes and hepatocytes cultured in the HARV showed similar cytochrome P450 2B activities measured as pentoxyresorufin-O-dealkylase and testosterone 16beta-hydroxylase. Further, intact hepatocytes cultured in the HARV were found to metabolize chlorzoxazone to 6-hydroxychlorzoxazone; dextromethorphan to dextrorphan, 3-methoxymorphinan, and 3-hydroxymorphinan; midazolam to 1-hydroxymidazolam and 4-hydroxymidazolam; and 7-hydroxycoumarin to its glucuronide and sulfate conjugates. In conclusion, we found that hepatocyte spheroids could be cultured in a HARV to retain cellular and physiological properties of the intact liver, including drug-metabolizing enzyme activities, plasma protein production, and long-term (1 mo) maintenance of viability and cellular function.

42 citations


Journal ArticleDOI
TL;DR: This work modified and optimized a method for generating differentiated hamster tracheal epithelial cultures from Syrian golden hamsters and characterized the cultures for cell composition and function, providing an efficient, high-yield protocol that can be used for a variety of in vitro studies includingtracheal cell differentiation, airway disease mechanisms, and pathogen-host interactions.
Abstract: Primary airway epithelial cell cultures can provide a faithful representation of the in vivo airway while allowing for a controlled nutrient source and isolation from other tissues or immune cells. The methods used have significant differences based on tissue source, cell isolation, culture conditions, and assessment of culture purity. We modified and optimized a method for generating tracheal epithelial cultures from Syrian golden hamsters and characterized the cultures for cell composition and function. Soon after initial plating, the epithelial cells reached a high transepithelial resistance and formed tight junctions. The cells differentiated into a heterogeneous, multicellular culture containing ciliated, secretory, and basal cells after culture at an air-liquid interface (ALI). The, secretory cell populations initially consisted of MUC5AC-positive goblet cells and MUC5AC/CCSP double-positive cells, but the makeup changed to predominantly Clara cell secretory protein (CCSP)-positive Clara cells after 14 d. The ciliated cell populations differentiated rapidly after ALI as judged by the appearance of β tubulin IV-positive cells. The cultures produced mucus, CCSP, and trypsin-like proteases and were capable of wound repair as judged by increased expression of matrilysin. Our method provides an efficient, high-yield protocol for producing differentiated hamster tracheal epithelial cells that can be used for a variety of in vitro studies including tracheal cell differentiation, airway disease mechanisms, and pathogen-host interactions.

Journal ArticleDOI
TL;DR: Localized expression of class III beta-tubulin and sarcomeric myosin also was detected, indicating that representatives of all three embryonic germ layers were present after induction of differentiation in vitro, and suggested that embryonic ectoderm- and primitive endoderman-derived tissues were segregated.
Abstract: Although the ES-D3 murine embryonic stem cell line was one of the first derived, little information exists on the in vitro differentiation potential of these cells. We have used immunocytochemical and flow cytometric methods to monitor ES-D3 embryoid body differentiation in vitro during a 21-d period. Spontaneous differentiation of embryoid body cells was induced by leukemia inhibitory factor withdrawal in the absence of feeder cells. The pluripotent stem cell markers Oct-3/4, SSEA-1, and EMA-1 were found to persist for at least 7 d, whereas the primitive endoderm marker cytokeratin endo-A was expressed at increasing levels from day 6. The localization of these antigens within the embryoid bodies suggested that embryonic ectoderm- and primitive endoderm-derived tissues were segregated. Localized expression of class III beta-tubulin and sarcomeric myosin also was detected, indicating that representatives of all three embryonic germ layers were present after induction of differentiation in vitro.

Journal ArticleDOI
TL;DR: The collagen microcarrier spinner culture system provides an efficient method to amplify large numbers of healthy functional cells that can be subsequently used for further in vitro or transplantation studies.
Abstract: In vitro propagation of osteoblasts in three-dimensional culture has been explored as a means of cell line expansion and tissue engineering purposes. Studies investigating optimal culture conditions are being conducted to produce bone-like material. This study demonstrates the use of collagen microcarrier beads as a substrate for three-dimensional cell culture. We have earlier reported that microcarriers consisting of cross-linked type I collagen support chondrocyte proliferation and synthesis of extracellular matrix. In this study, we investigated the use of collagen microcarriers to propagate human trabecular bone-derived osteoblasts. Aggregation of cell-seeded microcarriers and production of extracellular matrix–like material were observed after 5 d in culture. Expression of extracellular matrix proteins osteocalcin, osteopontin, and type I collagen was confirmed by messenger ribonucleic acid analysis, radioimmunoassay, and Western blot analysis. The efficient recovery of viable cells was achi...

Journal ArticleDOI
TL;DR: The results suggest that cryopreserved human hepatocytes can be a suitable in vitro model for evaluating xenobiotics as inducers of CYP1A1/2 and CYP3A4 enzymes.
Abstract: Induction of cytochrome P450 (CYP) by drugs is one of major concerns for drug-drug interactions. Thus, the assessment of CYP induction by novel compounds is a vital component in the drug discovery and development processes. Primary human hepatocytes are the preferred in vitro model for predicting CYP induction in vivo. However, their use is hampered by the erratic supply of human tissue and donor-to-donor variability. Although cryopreserved hepatocytes have been recommended for short-term applications in suspension, their use in studies on induction of enzyme activity has been limited because of poor attachment and response to enzyme inducers. In this study, we report culture conditions that allowed the attachment of cryopreserved human hepatocytes and responsiveness to CYP inducers. We evaluated the inducibility of CYP1A1/2 and CYP3A4 enzymes in cryopreserved hepatocytes from three human donors. Cryopreserved human hepatocytes were cultured in serum-free medium for 4 d. They exhibited normal morphology and measurable viability as evaluated by the reduction of tetrazolium salts (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) by cellular dehydrogenases. Treatment with β-naphthoflavone (10 μM) for 3 d increased ethoxyresorufin-O-deethylase activity (CYP1A1/2) by 6- to 11-fold over untreated cultures and increased CYP1A2 messenger ribonucleic acid (mRNA) expression by three- to eightfold. Similarly, treatment of cryopreserved human hepatocytes with rifampicin (25 μM) for 3 d increased testosterone 6β-hydroxylase activity (CYP3A4) by five- to eightfold over untreated cultures and increased CYP3A4 mRNA expression by four- to eightfold. The results suggest that cryopreserved human hepatocytes can be a suitable in vitro model for evaluating xenobiotics as inducers of CYP1A1/2 and CYP3A4 enzymes.

Journal ArticleDOI
TL;DR: A new culture system has been developed in which cells are grown on substrata made using perfluorocarbons coated with collagen type 1 and other adhesive factors, which provide both the optimal level of oxygen cells need to maintain differentiated functions and the flexible and weaker type of adhesion that allows cells to round up, interact with each other, and when provided with adequate nutritional support, to grow in three dimension.
Abstract: Tissue culture has played a major role in the rapid advances made in medical science in the past 50 yr. The full potential of the technique, however, is limited by the fact that growth of cells is usually restricted to a monolayer accompanied by major decreases in many of their tissue-specific functions. This has been shown to be due, in large part, to the inadequate oxygenation of cells growing in tissue culture dishes. Studies that show that the high charge density and rigidity of the plastic and glass surfaces used for culture are also major factors limiting growth of cells to a monolayer, are reviewed. A new culture system has been developed in which cells are grown on substrata made using perfluorocarbons (PFCs) coated with collagen type 1 and other adhesive factors. Perfluorocarbons have a much higher solubility for oxygen than water and have been used as oxygen delivery systems to protect cells from hypoxia. These new PFC-based substrata can provide both the optimal level of oxygen cells need to maintain differentiated functions and the flexible and weaker type of adhesion that allows cells to round up, interact with each other, and when provided with adequate nutritional support, to grow in three dimension.

Journal ArticleDOI
TL;DR: In the present study, a high-intensity magnetic field of 14 T affected the morphology of smooth muscle cell assemblies, and the shapes of the cell colonies extended along the direction of the magnetic flux, indicating that smooth muscle cells detect high-density magnetic flux and thus change their cell orientation.
Abstract: Under a strong magnetic field, the diamagnetic properties of biological cells modulate the behavior of the cells themselves, under conditions of both floating and adherence. The morphological effects of strong static magnetic fields on adherent cells are less well understood than the effects of magnetic fields on red blood cells. In the present study, a high-intensity magnetic field of 14 T affected the morphology of smooth muscle cell assemblies, and the shapes of the cell colonies extended along the direction of the magnetic flux. The phenomenon was most notable under magnetic fields of more than 10 T, where an ellipsoidal pattern of smooth muscle cell colonies was clearly observed. The ellipticity of the cell colony pattern with a 14-T magnetic field was 1.3, whereas that with a field of 0-8 T was close to a circle at about 1.0. The evidence that smooth muscle cells detect high-density magnetic flux and thus change their cell orientation was shown as a visible pattern of cellular colonies. The speculated mechanism is a diamagnetic torque force acting on cytoskeleton fibers, which are dynamically polymerizing-depolymerizing during cell division and cell migration.

Journal ArticleDOI
TL;DR: The results provide an improved culture technique for ovarian tissue of the kuruma shrimp, and the best growth of ovarian cells was obtained in a culture system consisting of double strength of Leibowitz-15 medium supplemented with 10% fetal bovine serum and TC-Yeastolate.
Abstract: Cell growth in ovarian primary culture of the kuruma shrimp, Marsupenaeus japonicus, was examined under various culture conditions. The best growth of ovarian cells was obtained in a culture system consisting of double strength of Leibovitz-15 medium supplemented with 10% fetal bovine serum, glucose (1 g/L), proline (0.1 g/L), TC-Yeastolate (1 g/L), and lactalbumin hydrolysate (1 g/L). The cells survived in this medium at 25 degrees C for 45 d. The epithelial-like cells predominated in 10-d-old cultures, covering >80% of the surface area on the bottom of flask. Cells in mitosis were often observed. Cell proliferation was monitored by incorporation of 5-bromo-2'-deoxyuridine (BrdU), an analog of thymidine. 5-Bromo-2'-deoxyuridine-associated cells accounted for 11.5 and 35.0% of cell populations at 2 and 24 h, respectively, after BrdU treatment. Our results provide an improved culture technique for ovarian tissue of the kuruma shrimp.

Journal ArticleDOI
TL;DR: The procedure to isolate cells from skin using the enzymatic tissue dissociation procedure did not only allow selection of optimal CHC batches able to digest dermal tissue with an high cell viability but also significantly increased the fibroblast yields, enabling us to produce autologous der mal tissue in a clinically acceptable time frame of 3 wk.
Abstract: The number of medical applications using autologous fibroblasts is increasing rapidly. We investigated thoroughly the procedure to isolate cells from skin using the enzymatic tissue dissociation procedure. Tissue digestion efficiency, cell viability, and yield were investigated in relation to size of tissue fragments, digestion volume to tissue ratio, digestion time, and importance of other protease activities present in Clostridium histolyticum collagenase (CHC) (neutral protease, clostripain, and trypsin). The results showed that digestion was optimal with small tissue fragments (2-3 mm3) and with volumes tissue ratios > or =2 ml/g tissue. For incubations 14 h) (collagenase 1350- 3000 U/ml, neutral protease 2550-7700 U/ml, and clostripain 18-36 U/ml). Using these conditions, a maximum fibroblast expansion was achieved when isolated cells were seeded at 1 x 10(4) cells/cm2. These results did not only allow selection of optimal CHC batches able to digest dermal tissue with an high cell viability but also significantly increased the fibroblast yields, enabling us to produce autologous dermal tissue in a clinically acceptable time frame of 3 wk.

Journal ArticleDOI
TL;DR: It is demonstrated that biologically relevant levels of homocysteine in combination with copper can results in apoptosis as a result of oxidative stress; therefore, homocy steine has the potential to disrupt normal palate development.
Abstract: Cleft palate is the most common craniofacial anomaly. Affected individuals require extensive medical and psychosocial support. Although cleft palate has a complex and poorly understood etiology, low maternal folate is known to be a risk factor for craniofacial anomalies. Folate deficiency results in elevated homocysteine levels, which may disturb palatogenesis by several mechanisms, including oxidative stress and perturbation of matrix metabolism. We examined the effect of homocysteine-induced oxidative stress on human embryonic palatal mesenchyme (HEPM) cells and demonstrated that biologically relevant levels of homocysteine (20-100 microM) with copper (10 microM) resulted in dose-dependent apoptosis, which was prevented by addition of catalase but not superoxide dismutase. Incubation of murine palates in organ culture with homocysteine (100 micro) and CuSO(4) (10 microM) resulted in a decrease in palate fusion, which was not significant. Gelatin gel zymograms of HEPM cell-conditioned media and extracts of cultured murine palates, however, showed no change in the expression or activation of pro-matrix metalloproteinase-2 with homocysteine (20 microM-1 mM) with or without CuSO(4) (10 microM). We have demonstrated that biologically relevant levels of homocysteine in combination with copper can result in apoptosis as a result of oxidative stress; therefore, homocysteine has the potential to disrupt normal palate development.

Journal ArticleDOI
TL;DR: It is reported that human airway epithelial cells obtained from nasal scrapings or bronchial brushings can be grown in culture to produce polarized cell sheets suitable for studies of vectorial transport.
Abstract: Airway epithelial cultures are generally derived from tracheas postmortem or from surgical specimens of nasal polyps or turbinates. Scrapings of the mucosal surface have been little used as starting material for cultures because of their low yield of epithelial cells and their contamination with mucous secretions, blood, and underlying connective tissue. For the first time, we report that human airway epithelial cells obtained from nasal scrapings or bronchial brushings can be grown in culture to produce polarized cell sheets suitable for studies of vectorial transport.

Journal ArticleDOI
TL;DR: The results strongly suggest that the oviductal epithelium consists of two functionally determined populations, and this is the first establishment of functional clonal cell lines of the Oviduct and makes it possible to study independently two ovidUCTal functions, secretion and ciliogenesis.
Abstract: Oviductal functions have been studied mainly in primary epithelial cell culture and organ culture. However, secretory cells and ciliated cells coexist in the epithelium, and the small size of the oviduct limits the sources of both epithelial and stromal cells. To circumvent the limits, we attempted to establish clonal cell lines from an oviduct of a p53-deficient mouse. An oviduct was enzymatically digested and cultured in medium containing 10% fetal calf serum supplemented with estradiol-17β. Morphologically distinct clones (10 epithelial and 4 fibroblastic clones) were established, and all clones expressed estrogen receptor α and progesterone receptor. Expression of a mouse oviduct-specific glycoprotein gene as a marker of secretory cells was limited in one clone and was stimulated by estrogens and suppressed by progesterone. Expression of helix factor hepatocyte nuclear factor/forkhead homologue-4 gene as a marker of ciliated cells was limited in two clones and was suppressed by estrogens. The two genes were never coexpressed in any clones. The results strongly suggest that the oviductal epithelium consists of two functionally determined populations. To our knowledge, this is the first establishment of functional clonal cell lines of the oviduct and makes it possible to study independently two oviductal functions, secretion and ciliogenesis.

Journal ArticleDOI
TL;DR: Immunohistological and ultrastructural analyses showed that these three-dimensional bronchial equivalents present good structural organization, allowing ciliogenesis to occur in culture, using human epithelial and fibroblastic cells.
Abstract: We have reported morphological and functional features of cells isolated from human bronchial biopsies. Both epithelial and fibroblastic cells were isolated from the same biopsies using collagenase. A few models have been established to study normal bronchial response to various agents and to understand the mechanisms responsible for some disorders, such as asthma. We produced three-dimensional bronchial equivalents in culture, using human epithelial and fibroblastic cells. We previously showed that peripheral anchorage can prevent the dramatic collagen contraction in gels seeded with fibroblasts when properly adapted to the size and type of cultured tissues. Our bilayered bronchial constructs were anchored and cultured under submerged conditions and at the air-liquid interface. Three culture media were compared. Serum-free medium supplemented with retinoic acid (5 x 10(-8) M) was found to be the best for maintenance of bronchial cell properties in the reconstructed bronchial tissue. Immunohistological and ultrastructural analyses showed that these equivalents present good structural organization, allowing ciliogenesis to occur in culture. Moreover, human bronchial goblet cells could differentiate and secrete mucus with culture time. Laminin, a major constituent of the basement membrane and basal cells, was also detected at the mesenchymoepithelial interface. Such models will be useful for studying human bronchial properties in vitro.

Journal ArticleDOI
TL;DR: It is suggested that a homogeneous 10-T SMF does not alter the expression of the c-jun, c-fos, and c-myc protooncogenes, and a strong MF gradient may have significant biological effects, particularly regarding processes related to an elevation of c-Jun gene expression.
Abstract: We investigated the effects of 6- and 10-T static magnetic fields (SMFs) on the expression of protooncogenes using Western blot immunohybridization methods. We used a SMF exposure system, which can expose cells to a spatially inhomogeneous 6 T with a strong magnetic field (MF) gradient (41.7 T/m) and a spatially homogeneous 10 T of the highest magnetic flux density in this experiment. HL-60 cells exposed to either 6- or 10-T SMF for periods of 1 to 48 h did not exhibit remarkable differences in levels of c-Myc and c-Fos protein expression, as compared with sham-exposed cells. In contrast, c-Jun protein expression increased in HL-60 cells after exposure to 6-T SMF for 24, 36, 48, and 72 h. These results suggest that a homogeneous 10-T SMF does not alter the expression of the c-jun, c-fos, and c-myc protooncogenes. However, our observation that exposure to a strong MF gradient induced c-Jun expression suggests that a strong MF gradient may have significant biological effects, particularly regarding processes related to an elevation of c-jun gene expression.

Journal ArticleDOI
TL;DR: Evaluation of a number of protocols with two continuous cell lines for the provision of differentiated cells for use in functional assays indicated that ATRA supplemented with vitamin D3 and granulocyte colony-stimulating factor affords robust, rapid, and reproducible differentiation of both cell types.
Abstract: Production of effective vaccine formulations is dependent on the availability of assays for the measurement of protective immune responses. The development and standardization of in vitro human cell-based assays for functional opsonophagocytic antibodies require critical evaluation and optimization of the preparation of cells for the assay. We report evaluation of a number of protocols with two continuous cell lines (NB-4 and HL-60) for the provision of differentiated cells for use in functional assays. Flow cytometric analysis of CD11b antigen expression, as a marker of differentiation, indicated that all-trans-retinoic acid (ATRA) gave improved differentiation (>80% of cells differentiated at 96 h) when compared with dimethylformamide (DMF) ( 40 passages failed to express CD11b antigen or show morphological changes associated with differentiation after exposure to either differentiation-inducing reagent. Late-passage cells also demonstrated increased tolerance to DMF. Our results indicated that ATRA supplemented with vitamin D3 and granulocyte colony-stimulating factor affords robust, rapid, and reproducible differentiation of both cell types.

Journal ArticleDOI
TL;DR: Findings indicate differentiation state-dependent sensitivity of Caco-2 cells to ergovaline, potential problems of the MTT assay as an indicator of cellular toxicity, and usefulness of alamarBlue assay over DNA assay for toxicity assessment.
Abstract: The exact mechanisms of fescue toxicity in animals have yet to be established, but it has been associated with an inability to thrive. Ergovaline is the major ergopeptine alkaloid associated with fungal infections of tall fescue. Gastrointestinal (GI) toxicity of ergovaline (10(-11) to 10(-4) M) was evaluated in Caco-2 cells (mimicking the GI epithelium) beginning on days 1, 8, and 18 of culture. Acute and chronic toxicity was assessed after 24 and 72 h of exposure. Treatment periods were chosen to study undifferentiated, semidifferentiated, and completely differentiated cells. Cell loss and metabolic activity were assessed by thiazolyl blue reduction (3-(4,5-dimethylthiozole-2-yl)-2,5,-biphenyl tetrazolium bromide [MTT], mitochondrial succinate dehyrdogenase activity), alamarBlue assay (cytochrome oxidase activity), and deoxyribonucleic acid (DNA) quantitation. Undifferentiated cells were sensitive to 1 x 10(-4) M ergovaline after acute exposure (from 52 to 74% of control values depending on assay). After 72 h of exposure to 1 x 10(-4) M ergovaline, in all three assays, treatment means were reduced to approximately 10% of the control means. By day 11 in culture, ergovaline toxicity to cells had decreased. With 24 h exposure, an apparent paradoxical increase in MTT was seen at some concentrations. This increase in MTT was also found in fully differentiated cells (day 21), whereas alamarBlue activity decreased. No change in DNA was found until 72 h of exposure, when DNA was reduced approximately 12% over most concentrations. These findings indicate differentiation state-dependent sensitivity of Caco-2 cells to ergovaline, potential problems of the MTT assay as an indicator of cellular toxicity, and usefulness of alamarBlue assay over DNA assay for toxicity assessment.

Journal ArticleDOI
TL;DR: The data suggest that early in differentiation when de novo fatty acid (FA) synthesis is limited and competition for FAs by membrane and triacylglycerol synthetic pathways is great, human preadipocytes do not differentiate unless a PPARγ ligand is added.
Abstract: Conjugated linoleic acids (CLAs) reduce fat deposition in several mammalian species. Among the proposed mechanisms for this effect are reduced preadipocyte proliferation and differentiation. We measured proliferation and differentiation of cultured human preadipocytes treated with CLAs. Preadipocytes were differentiated with insulin, hydrocortisone, transferrin, and 10% fetal bovine serum, with isobutyl-methylxanthine included for the first 2 d. The differentiation medium contained 200 μM oleic acid (C18:1), 50 μM cis-9,trans-11-CLA (9,11-CLA), or 50 μM trans-10,cis-12-CLA (10,12-CLA); the negative control medium contained no added fatty acid, and the cells did not differentiate. Cell number increased three to four times during the 17 d of differentiation, but was 30–35% lower in the CLA-treated cells than in the negative control cells. Compared with the negative control cells, differentiation was increased in the cells treated with C18:1 (increased Oil Red O–stained material [OROSM], triacylglyc...

Journal ArticleDOI
TL;DR: It was concluded that both cytopathological examination and assessment of telomerase activity contribute to the detection of malignant cells in primary cultures of human solid tumors, whereas growth in soft agar was not a good indicator ofmalignant cells.
Abstract: Isolation and growth of malignant cells from solid tumors have often met with disappointing results. Consequently, we have developed a cell culture methodology based on ex vivo explantation of tumor tissue, with subsequent monolayer cell outgrowth. In an attempt to assess methods for detection of malignant cells in these cultures, we analyzed and compared the results of cytopathology, growth in soft agar, and detection of telomerase activity with those of standard immunohistochemistry (IHC) techniques for the detection of cytokeratins, tumor marker p53, and proliferation marker Ki-67. The sensitivity of detection of malignant cells was 85% (22/26) for cytopathological examination, 30% (3/10) for soft agar growth, and 100% (12/12) for detection of telomerase activity. From these data, we concluded that both cytopathological examination and assessment of telomerase activity contribute to the detection of malignant cells in primary cultures of human solid tumors, whereas growth in soft agar was not a good indicator of malignant cells. Although not specific for malignant cells per se, IHC detection for epithelial cell cytokeratins showed a high degree of sensitivity (100%, 23/23), whereas the sensitivity for detection of tumor marker p53 and proliferation marker Ki-67 was 30% (7/23) and 70% (16/23), respectively. These data also provide proof that malignant tumor cells, derived from a diverse number of human solid tumors, can be isolated and grown in primary cell culture.

Journal ArticleDOI
TL;DR: Though differentiation of cells may vary slightly depending on the insert used, cells on any type of insert are much better differentiated than cells grown on solid surfaces, and it is both possible and desirable to make all functional measurements on cells growing on clear porous supports.
Abstract: Optical measurements from epithelial cells grown on clear solid surfaces (e.g., coverslips, petri dishes) are often compared with other measurements (e.g., short-circuit current; I(sc)) obtained from cells grown on opaque porous surfaces (inserts). However, the relative levels of differentiation of cells grown under the two conditions are usually unknown. To address this issue, we grew primary cultures of human tracheal epithelium on solid surfaces or on porous inserts and compared their total levels of protein and deoxyribonucleic acid, electrical properties in Ussing chambers, and ultrastructure. To measure ion transport across cells grown on solid supports, cells were grown on inserts placed on parafilm. Later, separation of insert from parafilm allowed the cells' I(sc) to be measured in Ussing chambers. Four different media were used. Cells grown in one medium showed very low levels of differentiation on all growth supports. In the other media, growth on inserts markedly enhanced differentiation as compared with solid supports. Baseline I(sc) of cells grown on either clear or opaque inserts was at least 30 times greater than that of cells grown on solid supports, though I(sc) with clear inserts averaged approximately 30% lower than that with opaque inserts. We conclude that though differentiation of cells may vary slightly depending on the insert used, cells on any type of insert are much better differentiated than cells grown on solid surfaces. Thus, it is both possible and desirable to make all functional measurements on cells grown on clear porous supports.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that the candidate sweet taste receptor T1R3 is essential for the recognition and response to the disaccharide trehalose.
Abstract: Recently, a sweet taste receptor family, the T1R family, that recognizes some carbohydrates including sucrose was identified. Although the T1R3 molecule is known to participate in heterodimers that are used as sweet- and umami-tasting receptors, there is no evidence that T1R3 alone recognizes similar ligands. We demonstrate for the first time that the candidate sweet taste receptor T1R3 is essential for the recognition and response to the disaccharide trehalose. Our system is a valuable tool not only for understanding the relationship between sweeteners and their receptors but also for exploring the diversities of their receptors, resulting in the design of new high-potency sweeteners.

Journal ArticleDOI
TL;DR: This result indicates that IFN-γ production by nonadherent cell populations of splenocytes treated with estrogens is regulated by adherent cell populations, and suggests that the plasma membrane-associated estrogen receptor plays a prominent role in this suppression mechanism.
Abstract: Here, we reported the effects of 17beta-estradiol (E2), isoflavone genistein (Gen), and daidzein (Dai) on the production of interferon (IFN)-gamma by splenocytes isolated from C57BL/6N mice. When mouse splenocytes were stimulated with lipopolysaccharide, E2, Gen, and Dai suppressed the production of IFN-gamma. However, when only nonadherent cell populations of splenocytes were tested, none of these estrogenic compounds suppressed IFN-gamma production. This result indicates that IFN-gamma production by nonadherent cell populations of splenocytes treated with estrogens is regulated by adherent cell populations. Moreover, direct cell-cell interaction between both populations was necessary for suppression of IFN-gamma production by nonadherent populations. In addition, E2 conjugated with bovine serum albumin inhibited IFN-gamma production as well as E2. This result suggests that the plasma membrane-associated estrogen receptor plays a prominent role in this suppression mechanism.