scispace - formally typeset
Search or ask a question

Showing papers in "Inorganic Chemistry in 2022"


Journal ArticleDOI
TL;DR: In this paper , a doughnut-shaped Pd-Bi2Te3 heterostructured catalyst was proposed to accelerate charge transfer and boost the oxidation of CO-like intermediates, which is conducive to the enhancement in electrochemical stability.
Abstract: The electrooxidation of ethylene glycol (EG) is of vital significance for the conversion from biomass energy into electrical energy via direct fuel cells. However, the EG oxidation reaction (EGOR) suffers from poor efficiency due to the limitation of high-performance electrocatalysts for cleaving the C-C bonds. Herein, this limitation is successfully addressed by fabricating the doughnut-shaped Pd-Bi2Te3 heterostructured catalyst. Notably, the heterojunction Pd-Bi2Te3 nanocatalyst has been demonstrated to be highly active toward the EGOR with superb activity and durability, in which a mass activity as high as 2420.8 mA mg-1 is achieved in alkaline media, being 1.7 times higher than that of the commercial Pd/C catalyst. Upon combination of experimental results with mechanism studies, it is indicated that the remarkable EGOR performance is attributed to the enlarged active areas that stemmed from the doughnut-like structure, as well as the strong synergistic effect from Pd-Bi2Te3 and Pd. More importantly, the highly electroactive Pd-Bi2Te3 can accelerate charge transfer and boost the oxidation of CO-like intermediates, which are conducive to the enhancement in electrochemical stability.

64 citations


Journal ArticleDOI
TL;DR: The magnetic solid phase extraction (MSPE) has become a popular method for the removal of different pollutants from the environment as discussed by the authors , where metal-organic frameworks (MOFs) are a class of porous materials best known for their ultrahigh porosity.
Abstract: Due to the increasing environmental pollution caused by human activities, environmental remediation has become an important subject for humans and environmental safety. The quest for beneficial pathways to remove organic and inorganic contaminants has been the theme of considerable investigations in the past decade. The easy and quick separation made magnetic solid-phase extraction (MSPE) a popular method for the removal of different pollutants from the environment. Metal-organic frameworks (MOFs) are a class of porous materials best known for their ultrahigh porosity. Moreover, these materials can be easily modified with useful ligands and form various composites with varying characteristics, thus rendering them an ideal candidate as adsorbing agents for MSPE. Herein, research on MSPE, encompassing MOFs as sorbents and Fe3O4 as a magnetic component, is surveyed for environmental applications. Initially, assorted pollutants and their threats to human and environmental safety are introduced with a brief introduction to MOFs and MSPE. Subsequently, the deployment of magnetic MOFs (MMOFs) as sorbents for the removal of various organic and inorganic pollutants from the environment is deliberated, encompassing the outlooks and perspectives of this field.

48 citations


Journal ArticleDOI
TL;DR: In this paper , a reliable metal-organic framework-mediated and cation-exchange strategy has been proposed for the fabrication of hollow CoWO4-Co(OH)2 hierarchical nanoboxes assembled by rich ultrathin nanosheets.
Abstract: Rational design and construction of well-defined hollow heterostructured nanomaterials assembled by ultrathin nanosheets overtakes crucial role in developing high-efficiency oxygen evolution reaction (OER) electrocatalysts. Herein, a reliable metal-organic framework-mediated and cation-exchange strategy to tune the geometric structure and multicomponent heterostructures has been proposed for the fabrication of hollow CoWO4-Co(OH)2 hierarchical nanoboxes assembled by rich ultrathin nanosheets. Benefiting from the hierarchical hollow nanostructure, the CoWO4-Co(OH)2 nanoboxes offer plenty of metal active centers available for reaction intermediates. Moreover, the well-defined nanointerfaces between CoWO4 and Co(OH)2 can function as the bridge for boosting the efficient electron transfer from CoWO4 to Co(OH)2. As a consequence, the optimized CoWO4-Co(OH)2 nanoboxes can exhibit outstanding electrocatalytic performance toward OER by delivering 10 mA cm-2 with a low overpotential of 280 mV and a small Tafel slope of 70.6 mV dec-1 as well as outstanding electrochemical stability. More importantly, this CoWO4-Co(OH)2 heterostructured nanocatalyst can couple with Pt/C to drive overall water splitting to achieve 10 mA cm-2 with a voltage of 1.57 V.

48 citations


Journal ArticleDOI
TL;DR: In this article , the synthesis of supramolecular coordination complexes (SCCs) with a bright aggregate state or mechanical-stimuli-responsive luminescence is reported. But no mechanofluorochromism is observed.
Abstract: The development of supramolecular coordination complexes (SCCs) with a bright aggregate state or mechanical-stimuli-responsive luminescence is very significant and challenging. Herein, we report the synthesis of three different supramolecular platinum(II) metallacycles via coordination-driven self-assembly of a diplatinum(II) acceptor and organic donors with a triphenylamine, carbazole, or tetraphenylethylene moiety. The triphenylamine-modified SCC exhibits aggregation-induced emission enhancement (AIEE) but no mechanofluorochromism. The carbazole and tetraphenylethylene-based SCCs exhibit changes in aggregate fluorescence and also exhibit reversible mechanofluorochromism. This work not only reports three rare metallacycles with AIEE, aggregate fluorescence change, or mechanofluorochromic nature but also explores their potential applications in cell imaging and solid-state lighting.

46 citations


Journal ArticleDOI
TL;DR: In this article , the authors proposed a new solution for developing high-efficiency heterogeneous catalysts, which not only improves the functionalization strategies for nanoporous metal-organic frameworks, but also enriches the functionalisation strategies of nanoporous MOFs by introducing a strong Lewis basic group of fluorine.
Abstract: The high catalytic activity of metal-organic frameworks (MOFs) can be realized by increasing their effective active sites, which prompts us to perform the functionalization on selected linkers by introducing a strong Lewis basic group of fluorine. Herein, the exquisite combination of paddle-wheel [Cu2(CO2)4(H2O)] clusters and meticulously designed fluorine-funtionalized tetratopic 2',3'-difluoro-[p-terphenyl]-3,3″,5,5″-tetracarboxylic acid (F-H4ptta) engenders one peculiar nanocaged {Cu2}-organic framework of {[Cu2(F-ptta)(H2O)2]·5DMF·2H2O}n (NUC-54), which features two types of nanocaged voids (9.8 Å × 17.2 Å and 10.1 Å × 12.4 Å) shaped by 12 paddle-wheel [Cu2(COO)4H2O)2] secondary building units, leaving a calculated solvent-accessible void volume of 60.6%. Because of the introduction of plentifully Lewis base sites of fluorine groups, activated NUC-54a exhibits excellent catalytic performance on the cycloaddition reaction of CO2 with various epoxides under mild conditions. Moreover, to expand the catalytic scope, the deacetalization-Knoevenagel condensation reactions of benzaldehyde dimethyl acetal and malononitrile were performed using the heterogenous catalyst of NUC-54a. Also, NUC-54a features high recyclability and catalytic stability with excellent catalytic performance in subsequent catalytic tests. Therefore, this work not only puts forward a new solution for developing high-efficiency heterogeneous catalysts, but also enriches the functionalization strategies for nanoporous MOFs.

45 citations


Journal ArticleDOI
TL;DR: In this paper, an ionic diffusion and coordination (IDC) strategy was used to fabricate atomically dispersed metal clusters in polymeric carbon nitride (PCN) for durable photocatalytic reactions owing to the thermodynamic stability limitation.
Abstract: It is a challenge to fabricate atomically dispersed metal clusters in polymeric carbon nitride (PCN) for durable photocatalytic reactions owing to the thermodynamic stability limitation. Herein, atomically dispersed Ru clusters are implanted into the PCN skeleton matrix based on an ionic diffusion and coordination (IDC) strategy, the stability of which is improved owing to the robust Ru-N bonds in the formed RuN4 and RuN3 configurations. Additionally, RuN4 and RuN3 as charge transport bridges between two adjacent melon strands efficaciously conquer hydrogen bond restriction in the skeleton to facilitate the in-plane mobility and separation of charge carriers. Moreover, the synergistic effect of adjacent Ru atoms is triggered on the assembled RuN3-RuN4 and RuN3-RuN3 in the atomically dispersed Ru clusters to significantly decrease hydrogen adsorption energy. As a result, the optimal PCN-Ru photocatalyst achieves nearly 6 times higher than the photocatalytic hydrogen evolution (PHE) rate of the Pt/PCN benchmark and maintains the long-term stable running for 104 h of 26 cycles; its overall PHE performance is far superior to the most of single atoms supported on g-C3N4 photocatalysts reported. The findings here gain new insight into the preparation strategy, structure configuration, and reaction mechanism for atomically dispersed metal clusters supported on PCN, which further stimulates the intensive investigations toward developing more efficient and stable PCN-like photocatalytic materials.

44 citations


Journal ArticleDOI
TL;DR: In this article , an efficient, economic, sustainable, and green protocol for multicomponent synthesis has been developed, where the one-pot direct Knoevenagel condensation-Michael addition-cyclization sequences are used for the transformation of aromatic aldehydes, malonitrile, and 4-hydroxycoumarin or phthalhydrazide.
Abstract: The synthesis of five- and six-membered oxygen- and nitrogen-containing heterocycles has been regarded as the most fundamental issue in organic chemistry and chemical industry because they are used in producing high-value products. In this study, an efficient, economic, sustainable, and green protocol for multicomponent synthesis has been developed. The one-pot direct Knoevenagel condensation-Michael addition-cyclization sequences for the transformation of aromatic aldehydes, malononitrile, and 4-hydroxycoumarin or phthalhydrazide generate the corresponding dihydropyrano[2,3-c]chromenes and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones over a novel mesoporous metal-organic framework-based supported Cu(II) nanocatalyst [UiO-66@Schiff-Base-Cu(II)] under ambient conditions. Moreover, the [UiO-66@Schiff-Base-Cu(II)] complex efficiently catalyzed the selectively large-scale synthesis of the target molecules with high yield and large turnover numbers. As presented, the catalyst demonstrates excellent reusability and stability and can be recycled up to six runs without noticeable loss of activity. Moreover, ICP-AES analysis showed that no leaching of Cu complex occurred during the recycling process of the heterogeneous [UiO-66@Schiff-Base-Cu(II)] nanocatalyst.

44 citations


Journal ArticleDOI
TL;DR: In this article , a cation-anion dual doping strategy has been proposed for modifying the electronic structure of CoP via doping Fe and S atoms, which can substantially facilitate the electron and mass transport.
Abstract: Tuning the electronic state of a nanocatalyst is of vital importance for elevating its catalytic performance toward oxygen evolution reaction (OER). Herein, a cation-anion dual doping strategy has been proposed for modifying the electronic structure of CoP via doping Fe and S atoms. Impressively, Fe doping has been demonstrated to be favorable for improving the carrier density of CoP to produce more hydroxyl radicals (•OH), while S doping can further modify the electronic structure of CoP to improve the charge-transfer characteristics, thereby synergistically decreasing the energy barrier for the transformation of O* to OOH* and promoting the electrocatalytic OER performance. More importantly, the highly open nanobox structure is also beneficial for the exposure of more accessible catalytically active sites, which can substantially facilitate the electron and mass transport, leading to the superb catalytic OER performance. The successful modulation of OER performance via dual-doping strategy will pose a new strategy for designing more advanced nanocatalysts for energy-related catalysis process.

37 citations


Journal ArticleDOI
TL;DR: In this article , the growth of Cu2O nanoparticles on 2D Zr-ferrocene (Zr-Fc)-MOF nanosheets to prepare 2D composites for near-infrared (NIR) photothermally enhanced chemodynamic antibacterial therapy was reported.
Abstract: Two-dimensional (2D) metal-organic framework (MOF) nanosheets have been demonstrated to be promising templates for the growth of various kinds of nanomaterials on their surfaces to construct novel 2D composites, thus realizing enhanced performance in various applications. Herein, we report the growth of Cu2O nanoparticles on 2D Zr-ferrocene (Zr-Fc)-MOF (Zr-Fc-MOF) nanosheets to prepare 2D composites for near-infrared (NIR) photothermally enhanced chemodynamic antibacterial therapy. The uniform Zr-Fc-MOF nanosheets are synthesized using the solvothermal method, followed by ultrasound sonication, and Cu2O nanoparticles are then deposited on its surface to obtain the Cu2O-decorated Zr-Fc-MOF (denoted as Cu2O/Zr-Fc-MOF) 2D composite. Promisingly, the Cu2O/Zr-Fc-MOF composite shows higher chemodynamic activity for producing ·OH via Fenton-like reaction than that of the pristine Zr-Fc-MOF nanosheets. More importantly, the chemodynamic activity of the Cu2O/Zr-Fc-MOF composite can be further enhanced by the photothermal effect though NIR laser (808 nm) irradiation. Thus, the Cu2O/Zr-Fc-MOF composite can be used as an efficient nanoagent for photothermally enhanced chemodynamic antibacterial therapy.

37 citations


Journal ArticleDOI
TL;DR: In this paper , a step-scheme photocatalyst of CsPbBr3 quantum dots/BiOBr nanosheets was fabricated via a facile self-assembly process.
Abstract: Heterojunction manipulation has been deemed as a promising approach in exploring efficient photocatalysts for CO2 reduction. In this article, a novel step-scheme (S-scheme) photocatalyst of CsPbBr3 quantum dots/BiOBr nanosheets (CPB/BiOBr) was fabricated via a facile self-assembly process. The strong interaction, staggered energy band alignments, and much different Fermi levels between CsPbBr3 and BiOBr promised the formation of an S-scheme heterojunction. The resultant CPB/BiOBr heterojunction delivered remarkable photocatalytic performance in CO2 reduction, with an electron consumption rate of 72.3 μmol g-1 h-1, which was 4.1 and 5.7 times that of single CsPbBr3 and BiOBr, respectively. The superior photocatalytic performance originated from the impactful spatial separation of photoinduced electron-hole pairs, as well as the preservation of strongly reductive electrons for CO2 reduction. This work offers a rational strategy to design S-scheme heterojunctions based on lead halide perovskites, which are expected to have potential applications in the field of photocatalysis and solar energy utilization.

36 citations


Journal ArticleDOI
TL;DR: In this paper , the advantages of in situ loading, heterojunction construction, and facet regulation were integrated based on the poly-facetexposed BiOCl single crystal.
Abstract: In this work, the advantages of in situ loading, heterojunction construction, and facet regulation were integrated based on the poly-facet-exposed BiOCl single crystal, and a facet-oriented supported heterojunction of Cu2O and BiOCl was fabricated (Cu2O@BiOCl[100]). The photocatalytic nitrogen reduction reaction (pNRR) activity of Cu2O@BiOCl[100] was as high as 181.9 μmol·g-1·h-1, which is 4.09, 7.13, and 1.83 times that of Cu2O, BiOCl, and Cu2O@BiOCl-ran (Cu2O randomly supported on BiOCl). Combined with the results of the photodeposition experiment, X-ray photoelectron spectroscopy characterization, and DFT calculation, the mechanism of Cu2O@BiOCl[100] for pNRR was discussed. When Cu2O directionally loaded on the [100] facet of BiOCl, electrons generated by Cu2O will be transmitted to the [100] facet of BiOCl through Z-scheme electron transmission. Due to the directional separation characteristics of charge in BiOCl, the electrons transmitted from Cu2O are enriched on the [001] facet of BiOCl, which will together with the original electrons generated by pristine BiOCl act on pNRR, thus greatly improving the activity of photocatalytic ammonia synthesis. Thus, a new construction scheme of biphasic semiconductor heterojunction was proposed, which provides a reference research idea for designing and synthesizing high-performance photocatalysts for nitrogen reduction.

Journal ArticleDOI
TL;DR: In this article , a new benzothiadiazole-based Eu-MOF (JXUST-11) was obtained based on 4,4'-(benzo[c][1,2,5]thiadia-4,7-diyl)dibenzoic acid (H2BTDB), which exhibits a chain-based three-dimensional framework.
Abstract: The design and preparation of novel multifunctional lanthanide metal-organic frameworks (Ln-MOFs) have been arisen widespread attention. In particular, Ln-MOFs have shown great luminescence potential in chemical sensing. Herein, a new benzothiadiazole-based Eu-MOF {[(CH3)2NH2][Eu(BTDB)2]·2H2O}n (JXUST-11) was obtained based on 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid (H2BTDB), which exhibits a chain-based three-dimensional framework. Moreover, JXUST-11 is considered as a photoluminescent sensor to identify Al3+ and Ga3+ ions by fluorescence enhancement with the detection limits of 2.9 and 10.2 ppm, severally. Importantly, Al3+ and Ga3+ can be discerned with the naked eye by color change under a natural lamp. In addition, a portable MOF film based on JXUST-11 was developed for Al3+ and Ga3+ detection. This is the first Ln-MOF that can be employed as a naked-eye fluorescent probe to identify Ga3+. Interestingly, JXUST-11 is also capable of detecting Al3+ and Ga3+ in living cells.

Journal ArticleDOI
TL;DR: In this article , the synthesis of trimetallic NiCoV-LDH via a simple wet-chemical method was reported, which possesses aggregated sheet-like structures and is screened for OER studies in alkaline medium.
Abstract: Vast attention from researchers is being given to the development of suitable oxygen evolution reaction (OER) electrocatalysts via water electrolysis. Being highly abundant, the use of transition-metal-based OER catalysts has been attractive more recently. Among the various transition-metal-based electrocatalysts, the use of layered double hydroxides (LDHs) has gained special attention from researchers owing to their high stability under OER conditions. In this work, we have reported the synthesis of trimetallic NiCoV-LDH via a simple wet-chemical method. The synthesized NiCoV-LDH possesses aggregated sheet-like structures and is screened for OER studies in alkaline medium. In the study of OER activity, the as-prepared catalyst demanded 280 mV overpotential and this was 42 mV less than the overpotential essential for pristine NiCo-LDH. Moreover, doping of a third metal into the NiCo-LDH system might lead to an increase in TOF values by almost three times. Apart from this, the electronic structural evaluation confirms that the doping of V3+ into NiCo-LDH could synergistically favor the electron transfer among the metal ions, which in turn increases the activity of the prepared catalyst toward the OER.

Journal ArticleDOI
TL;DR: In this article , an excellent photothermal conversion material, BaY2O4: Yb3+/Nd3+, assembled with real-time optical thermometry is developed successfully.
Abstract: Nowadays, the construction of photothermal therapy (PTT) agents integrated with real-time thermometry for cancer treatment in deep tissues has become a research hotspot. Herein, an excellent photothermal conversion material, BaY2O4: Yb3+/Nd3+, assembled with real-time optical thermometry is developed successfully. Ultrasensitive temperature sensing is implemented through the fluorescence intensity ratio of thermally coupled Nd3+: 4Fj (j = 7/2, 5/2, and 3/2) with a maximal absolute and relative sensitivity of 68.88 and 3.29% K-1, respectively, which surpass the overwhelming majority of the same type of thermometers. Especially, a thermally enhanced Nd3+ luminescence with a factor of 180 is detected with irradiation at 980 nm, resulting from the improvement in phonon-assisted energy transfer efficiency. Meanwhile, the photothermal conversion performance of the sample is excellent enough to destroy the pathological tissues, of which the temperature can be raised to 319.3 K after 180 s of near-infrared (NIR) irradiation with an invariable power density of 13.74 mW/mm2. Besides, the NIR emission of Nd3+ can reach a depth of 7 mm in the biological tissues, as determined by an ex vivo experiment. All the results show the potential application of BaY2O4: Yb3+/Nd3+ as a deep-tissue PTT agent simultaneously equipped with photothermal conversion and temperature sensing function.

Journal ArticleDOI
TL;DR: In this article , a series of single-phase dyes-loaded metal-organic frameworks (MOFs) have been prepared in two different ways: the in-situ process and soaking method.
Abstract: The design of white-light phosphor is highly desirable for practical applications in SSL (solid-state lighting) and its related fields. Dye-loaded metal-organic frameworks (MOFs) have been widely demonstrated as one type of promising down conversion materials for WLEDs (white-light-emitting diodes), but two issues (dye leakage and inadequate quantum efficiency) require to be addressed before possible applications. Here, a series of single-phase dyes@In-MOF phosphors have been prepared in two different ways: the in-situ process and soaking method. The study of these dyes@In-MOF phosphors confirms the importance of this in-situ process that could effectively increase dye loading and quantum efficiency and greatly decrease dye leakage. As a result, a perfect WLED, fabricated using the in-situ-synthesized (AF/RhB@In-MOF)-3 (AF: Acriflavine; RhB: Rhodamine B) and 450 nm blue LED chip, exhibited a very high quantum yield (QY, up to 42.27%), a high luminous efficacy (LE) of 50.75 lm/W, a high color rendering index (CRI) of 91.2, and nearly identical Commission International ed'Eclairage (CIE) coordinates (0.33,0.31), indicating the potential application of the dye-loaded MOFs with good color quality in smart white LEDs.

Journal ArticleDOI
TL;DR: In this paper , a bimetallic Fe2Ni MIL-88 nanorods grown on reduced graphene oxide (rGO) were used for oxygen evolution reaction (OER) catalysts.
Abstract: The development of cost-effective and efficient oxygen evolution reaction (OER) catalysts has found increasing popularity due to the sluggish kinetics of OER, which has hampered the H2 production by H2O electrolysis. In this study, Fe2Ni MIL-88 (denoted FeNi) was composited by reduced graphene oxide (rGO, denoted R). Owing to the high porosity and abundant active sites of bimetallic MOF, proper conductivity of rGO, and the synergistic impact of Ni and Fe, the optimal composite (R@FeNi (1:1)) offered remarkable OER activity in alkaline environments. The obtained composite was employed in the OER, which led to a low overpotential of 264 mV at a current density of 10 mA cm-2 with a Tafel slope of 62 mV dec-1. Also, the bimetallic Fe2Ni MIL-88 nanorods grown on rGO led to a reduction in the onset potential of the OER. These findings exceeded the results of standard IrO2-based catalysts; they are also comparable or even better than the previously reported MOF-based catalysts.

Journal ArticleDOI
TL;DR: In this article , a new class of 2D/2D SnNb2O6/Ni-doped ZnIn2S4 heterojunctions is synthesized by a simple hydrothermal strategy, which was used to evaluate the synergy between interior and surface modifications.
Abstract: Interior and surface synergistic modifications can endow the photocatalytic reaction with tuned photogenerated carrier flow at the atomic level. Herein, a new class of 2D/2D SnNb2O6/Ni-doped ZnIn2S4 (SNO/Ni-ZIS) S-scheme heterojunctions is synthesized by a simple hydrothermal strategy, which was used to evaluate the synergy between interior and surface modifications. Theoretical calculations show that the S-scheme heterojunction boosts the desorption of H atoms for rapid H2 evolution. As a result, 25% SNO/Ni0.4-ZIS exhibits significantly improved PHE activity under visible light, roughly 4.49 and 2.00 times stronger than that of single ZIS and Ni0.4-ZIS, respectively. In addition, 25% SNO/Ni0.4-ZIS also shows superior structural stability. This work provides advanced insight for developing high-performance S-scheme systems from photocatalyst design to mechanistic insight.

Journal ArticleDOI
TL;DR: DMM had a significant inhibitory effect against 4T2 cancer cells, and the survival rate of 4T1 cells was less than 20% at 100 ppm, and it was found that DMM also possessed peroxidase-like catalytic activity under acidic conditions, which could catalyze H2O2 to produce •OH, exhibiting the potential chemodynamical treatment of cancer.
Abstract: Chemotherapy is still an important and effective clinical treatment for cancer. However, individual drugs hardly achieve precise controlled release and targeted therapy, thus resulting in unavoidable side effects. Fortunately, the emergence of drug carriers is expected to solve the above problems. In this work, the MOF-on-MOF strategy was adopted to encapsulate DOX into double-layer NH2-MIL-88B to fabricate a core-shell-structured DOX@NH2-MIL-88B-On-NH2-MIL-88B (DMM) and then realize the pH and GSH dual-responsive controlled DOX release. Because of the core-shell structure, the drug-loading capacity of DMM reached 14.4 wt %, which was nearly twice that of DOX@NH2-MIL-88B (DM), and the controlled release performance of DMM was also improved at the same time, greatly improving the kinetics equilibrium time of DOX from 2 h (DM) to 16 h (DMM) at pH 5.0. Moreover, we found that DMM also possessed peroxidase-like catalytic activity under acidic conditions, which could catalyze H2O2 to produce •OH, exhibiting the potential chemodynamical treatment of cancer. Cell experiments showed that DMM had a significant inhibitory effect against 4T1 cancer cells, and the survival rate of 4T1 cells was less than 20% at 100 ppm.

Journal ArticleDOI
TL;DR: In this paper , a 3D MXene-derived TiO2(M)@reduced graphene oxide (RGO) aerogel was developed for photo-assisted uranium extraction.
Abstract: Encapsulation of nano-semiconductor materials in three-dimensional (3D) adsorbents to build a typical semiconductor-adsorbent heterostructure is a forward-looking strategy for photo-assisted uranium extraction. Here, we develop 3D MXene-derived TiO2(M)@reduced graphene oxide (RGO) aerogel for photo-assisted uranium extraction. Theoretical simulations demonstrate that oxygen vacancies on TiO2(M) tailor the energy level structure and enhance the electron accumulation at gap states of TiO2(M), thereby further realizing the spatial separation efficiency of electron-hole pairs by the Schottky junction. By virtue of the in situ X-ray photoelectron spectroscopy spectrum, we identify that photogenerated electrons generated over TiO2(M) were transferred to graphene oxide aerogel by the Schottky junction. Accordingly, TiO2 (M)@RGO aerogel presents a considerable removal efficiency for U(VI) with a removal ratio of 95.7%. Relying on the X-ray absorption spectroscopy technique, we distinguish the evolution of 2H2O-2Oax-U-5Oeq into H2O-2Oax-U-3Oeq from dark to light conditions, further confirming the reduction of high-valent uranium. This strategy may open a paradigm for developing novel heterojunctions as photocatalysts for selective U(VI) extraction.

Journal ArticleDOI
TL;DR: In this article , a 2D/2D step-scheme photocatalyst of CsPbBr3/BiOCl is constructed by self-assembly of CpBr3 and BiOCl nanosheets (NSs).
Abstract: The rational design of a two-dimensional (2D)/2D "face-to-face" heterojunction photocatalyst is crucial for the mediation of interfacial charge transfer/separation. Herein, a unique 2D/2D step-scheme (S-scheme) photocatalyst of CsPbBr3/BiOCl is constructed by the self-assembly of CsPbBr3 and BiOCl nanosheets (NSs). Profiting from the effective interface contact and appropriate band structures between CsPbBr3 and BiOCl NSs, a valid S-scheme heterojunction of CsPbBr3/BiOCl is established. Density functional theory (DFT) calculations and a series of characterization techniques including X-ray photoelectron spectra (XPS), photoassisted Kelvin probe force microscopy (KPFM), and electron spin resonance (ESR) systematically corroborate the S-scheme charge-transfer mechanism between CsPbBr3 and BiOCl. The formation of an S-scheme heterojunction endows the photocatalyst with boosted charge separation and retainment of the highest redox ability. As a result, the obtained 2D/2D CsPbBr3/BiOCl S-scheme photocatalyst shows much superior CO2-reduction performance to single CsPbBr3 and BiOCl. This investigation provides new insights into the construction of novel S-scheme heterojunctions based on 2D/2D photocatalytic systems.

Journal ArticleDOI
TL;DR: In this paper , a stable surface bonding state of surface P(δ-)-Co/Ni (δ+)-O(�-) was formed on the surface of the catalyst by a one-step oxidation-phosphorus doping strategy.
Abstract: The development of clean energy is one of the effective strategies to solve carbon peak and carbon neutrality. The severe recombination of photogenerated carriers is one of the fundamental reasons that hinder the development of photocatalysis. In this work, NiCo-MOF/ZIF was obtained by the "ZIF on MOF" strategy for the first time, and a stable bonding state of surface P(δ-)-Co/Ni(δ+)-O(δ-) was formed on the surface of the catalyst by a one-step oxidation-phosphorus doping strategy. The X-ray photoelectron spectroscopy technique proves that phosphorus doping forms a unique bonding state on the surface of CoO-NiO. The novel surface bonding state can effectively inhibit the recombination of photogenerated carriers and can increase the migration rate of photogenerated electrons, which accelerates the process of photocatalytic hydrogen evolution. Photocatalytic hydrogen evolution kinetics verifies that the formation of P(δ-)-Co/Ni(δ+)-O(δ-) bonding states can accelerate the process of photocatalytic hydrogen evolution, and the durability of the catalyst is verified by cycling experiments. This work provides a new strategy for catalyst synthesis, new horizons, and effective strategies for the surface design of catalysts and the development of photocatalytic hydrogen evolution.

Journal ArticleDOI
TL;DR: NiCo-MOF-3 was successfully fabricated by applying a one-step solvothermal method in this article , from which NiCo-MFO-3 presented an optimal electrochemical performance compared to other NiCoMFOs and Ni/Co-MoF.
Abstract: As a novel electrode material for energy storage, metal-organic frameworks (MOFs) emerge with plenty of merits and certain drawbacks in the field of supercapacitors. Nevertheless, most MOFs synthesized for the moment are faced with dimension/distribution issues and dissatisfactory electrical conductivity. Hence, in this paper, NiCo-MOF was successfully fabricated by applying a one-step solvothermal method, from which NiCo-MOF-3 presents an optimal electrochemical performance compared to other NiCo-MOFs and Ni/Co-MOF. Owing to its unique three-dimensional spherical raspberry structure, NiCo-MOF-3 demonstrates an available internal resistance and electron transfer resistance to ameliorate electrical energy storage, exhibiting an excellent mass specific capacitance of 639.8 F/g at 1 A/g. Then, a flexible quasi-solid-state asymmetric supercapacitor was assembled with NiCo-MOF-3 as the positive electrode. The introduction of K3[Fe(CN)6] and glycerin in the gel electrolyte facilitates the maximum energy density of 66.3 Wh/kg of the device, with a corresponding power density reaching its maximum of 12,047 W/kg. The device's apparent energy density, excellent flexibility, and temperature resistance reveal that our method to prepare supercapacitor electrode material possesses more advantages than those in the former literature.

Journal ArticleDOI
TL;DR: In this paper , a combination of [Tb4(μ2-OH)2(CO2)8] cluster and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxyl phenyl)pyridine (H5BDCP) ligand generated a highly robust nanoporous framework.
Abstract: The catalytic performance of metal-organic framework (MOF)-based catalysts can be enhanced by increasing their catalytic sites, which prompts us to explore the multicore cluster-based skeletons by using designed functional ligands. Herein, the exquisite combination of [Tb4(μ2-OH)2(CO2)8] cluster and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) ligand generated a highly robust nanoporous framework of {[Tb4(BDCP)2(μ2-OH)2]·3DMF·5H2O}n (NUC-58), in which each four {Tb4} clusters are woven together to generate an elliptical nanocage (aperature ca. 12.4 Å). As far as we know, NUC-58 is an excellent nanocage-cluster-based {Tb4}-organic framework with the outstanding confined pore environments of a large specific surface area, high porosity, and plentiful coexisting Lewis acid-base sites of Tb3+, μ2-OH and Npyridine atoms. Performed experiments exhibited that NUC-58 owns a better catalytic performance for the cycloaddition reactions under mild conditions with a high turnover number and turnover frequency. Furthermore, NUC-58, as an eminent heterogeneous catalyst, can enormously boost the Knoevenagel condensation reactions. Thus, this work opens a path for the precise design of polynuclear metal cluster-based MOFs with excellent catalysis, stability, and regenerative behavior.

Journal ArticleDOI
TL;DR: In this article , a multifunctional metal-organic framework, Dy-MOF, was synthesized and structurally characterized, where the metal center DyIII is connected by four carboxyl groups to form the [Dy2(CO2)4] binuclear nodes, which are further interconnected by eight separate H2dobdc2- ligands to form a 3D framework including hydrophilic triangular channels and abundant hydrogen-bonding networks.
Abstract: A multifunctional metal-organic framework, (Hdmbpy)[Dy(H2dobdc)2(H2O)]·3H2O (Dy-MOF, H4dobdc = 2,5-dihydroxyterephthalic acid, dmbpy = 4,4'-dimethyl-2,2'-bipyridine), was synthesized and structurally characterized. The metal center DyIII is connected by four carboxyl groups to form the [Dy2(CO2)4] binuclear nodes, which are further interconnected by eight separate H2dobdc2- ligands to form a three-dimensional (3D) framework including hydrophilic triangular channels and abundant hydrogen-bonding networks. Dy-MOF has good stability in aqueous solution as well as in harsh acidic or alkaline solutions (pH range: 2.0-12.0). Furthermore, the luminescence signal of Dy-MOF undergoes a visualized color change as the acidity of the solution alters, which is the typical behavior of pH ratiometric probe. At a 100% relative humidity, Dy-MOF exhibits a high proton conductivity σ (1.70 × 10-4 S cm-1 at 303 K; 1.20 × 10-3 S cm-1 at 343 K) based on the proton hopping mechanism, which can be classified as a superionic conductor with σ exceeding 10-4 S cm-1. Additionally, the ferromagnetic interaction and magnetic relaxation behavior are simultaneously achieved in Dy-MOF. Herein, the combination of luminescence sensing, magnetism, and proton conduction in a single-phase 3D MOF may offer great potential applications in smart multitasking devices.

Journal ArticleDOI
TL;DR: In this paper , two stable fluorescent metal-organic frameworks (MOFs) are synthesized and used to detect tetracycline antibiotics in water and eggs, and the results showed that the detection of BUT-178 and BUT-179 can be easily recovered and repeatedly used without an obvious performance loss.
Abstract: The rapid detection of antibiotics in agricultural products is of great significance. In this work, two stable fluorescent metal-organic frameworks (MOFs), BUT-178 and BUT-179, are synthesized and used to detect tetracycline antibiotics. Among them, BUT-179 exhibits better performance in the detection of different tetracycline antibiotics in water and eggs. The limits of detection of BUT-179 toward tetracycline, aureomycin, oxytetracycline, and doxycycline all reach the nanomolar level. Furthermore, the cycling tests confirm that BUT-179 can be easily recovered and repeatedly used without an obvious performance loss. This work demonstrates the excellent application potential of MOFs for food safety, especially the fluorescence detection of antibiotics in foods.

Journal ArticleDOI
TL;DR: A controllable synthetic strategy of three-dimensional Cs2KInCl6 and zero-dimensional (0D) (Cs/K)2InCl5(H2O) halide perovskites by changing the Cs/K feed ratio is reported, and a novel green/yellow reversible emission switch is generated.
Abstract: Controlling the structure of halide perovskites through component engineering, and thus revealing the changes in luminescence properties caused by the conversion of crystal structure, is of great significance. Herein, we report a controllable synthetic strategy of three-dimensional (3D) Cs2KInCl6 and zero-dimensional (0D) (Cs/K)2InCl5(H2O) halide perovskites by changing the Cs/K feed ratio. 3D Cs2KInCl6 double perovskites are obtained at the Cs/K feed ratio of 1:1, while 0D (Cs/K)2InCl5(H2O) perovskites are formed at the Cs/K feed ratio of 2:1. Further, a reversible crystal structure transformation between 3D Cs2KInCl6 double perovskites and 0D (Cs/K)2InCl5(H2O) perovskites can be achieved by subsequent addition of metal-salt precursors. In addition, the emission efficiency of two perovskite structures can be greatly boosted by breaking the forbidden transition through Sb doping, and as a result, a novel green/yellow reversible emission switch is generated. Meanwhile, the relationship between perovskite structure and luminescence mechanism has been systematically revealed. These environmentally stable halide perovskites have great potential to be applied in optoelectronic devices.

Journal ArticleDOI
TL;DR: In this paper , an ideal spinel-perovskite nanocomposite based on Li-Mn-Fe-Si materials was successfully fabricated via a one-pot hydrothermal route to store hydrogen electrochemically.
Abstract: Owing to the extensive requirement for renewable energy sources such as hydrogen, great efforts are being devoted to optimizing the active ingredients for advanced hydrogen storage. In this regard, an ideal spinel-perovskite nanocomposite based on Li-Mn-Fe-Si materials was successfully fabricated via a one-pot hydrothermal route to store hydrogen electrochemically. To optimize both the phase composition and morphological features of nanostructures, the reaction was engineered under different conditions. Li-Mn-Fe-Si spinel-perovskite diphase structures were created with diverse shapes of polyhedral-shaped bulk particles, nanoparticles, nanoplates, and hierarchical structures. The alteration of multiple factors such as hydrothermal reaction time, temperature, polymeric surfactant type, and calcination temperature was surveyed to achieve the optimized size and morphology of the nanoproducts to be obtained. The morphological changes, structural regulations, porosity, and magnetic properties of the nanosized products were studied via field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET), and vibrating sample magnetometer (VSM) analyses. In addition, the electrochemistry features of the Li0.66Mn1.85Fe0.43O4/Fe2.57Si0.43O4/FeSiO3 (LMFO/FSO) nanocomposites were introduced on the basis of discharge capacity, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry(CV) methods in an alkaline electrolyte. The discharge capacity of the LMFO/FSO nanostructures with a nanoplate-like morphology as an optimal sample was calculated to be 910 mAh/g after 15 cycles at a constant current of 1 mA. The electrochemistry results confirm that the hydrogen storage capability of nanoplate composites is higher than those of other morphologies due to their superior surface area and faster electron transfer. Besides, this proposed strategy could simultaneously manipulate the architectural and compositional complexities to generate a superior electrochemical behavior in energy storage devices.

Journal ArticleDOI
TL;DR: In this paper , the synthesis and gas-phase photocatalytic CO2 reduction of an anionic porous Zn-metalated porphyrin metal-organic framework (MOF) induced by an ionic liquid is presented.
Abstract: Presented here are the synthesis and gas-phase photocatalytic CO2 reduction of an anionic porous Zn-metalated porphyrin metal-organic framework (MOF) induced by an ionic liquid. The desired CO2 affinity and deep conduction band position of the MOF catalyst provide strong kinetic and thermodynamic advantages for photocatalytic CO2 to CH4 conversion with high selectivity (∼70%) in H2O vapor.

Journal ArticleDOI
TL;DR: Based on an amide-modified ligand 5-(ethyl oxamate)-isophthalic acid (H2EtL), a new porous indium-organic framework (Me2NH2) 1.5[In1.5L2]·2DMF·2H2O (1) was synthesized and structurally characterized as discussed by the authors .
Abstract: Energy saving and emission reduction have always been the goal of separation and catalysis pursued in industrial production. Metal-organic frameworks (MOFs) are leading porous crystal materials with unique advantages in these fields. Based on an amide-modified ligand 5-(ethyl oxamate)-isophthalic acid (H2EtL), a new porous indium-organic framework (Me2NH2)1.5[In1.5L2]·2DMF·2H2O (1) was synthesized and structurally characterized. The unique porous environment gives it dual functional advantages in separation and catalysis. At room temperature, 1 possesses excellent adsorption capacities for C2 hydrocarbons and CO2, showing good separation behaviors for C2 hydrocarbons/CO2 on CH4 and C2H2 on CO2, which is conducive to efficient purification of CH4 and C2H2 confirmed by the breakthrough experiment. Meanwhile, catalytic results indicate that 1 can be used as a good catalyst for effective fixation of CO2 under mild conditions to form cyclic carbonates.

Journal ArticleDOI
TL;DR: In this article , four new isostructural lanthanide metal-organic frameworks (MOFs), namely {[Ln(DMTP-DC)1.5(H2O)3]·DMF}n [H2DMTPDC = 2',5'-dimethoxytriphenyl-4, 4,4″-dicarboxylic acid; LnIII = EuIII (1), GdIII (2), TbIII (3), and DyIII (4)], have been synthesized and characterized.
Abstract: Four new isostructural lanthanide metal-organic frameworks (MOFs), namely {[Ln(DMTP-DC)1.5(H2O)3]·DMF}n [H2DMTP-DC = 2',5'-dimethoxytriphenyl-4,4″-dicarboxylic acid; LnIII = EuIII (1), GdIII (2), TbIII (3), and DyIII (4)], have been synthesized and characterized. Single-crystal structure analysis reveals that 1-4 are three-dimensional Ln-MOFs with rich H-bonding of coordinated H2O molecules in the network channels. The X-ray diffraction patterns indicate that Ln-MOF 1 displays good stabilities in organic solvents and aqueous solutions with distinct pH values. Both 1 and 3 show characteristic emission of LnIII ions. Ln-MOF 1 can be used as a ratiometric fluorescence sensor for arginine and lysine in aqueous solution, and the detection limits are 24.38 μM for arginine and 9.31 μM for lysine. All 1-4 show proton conductivity related to relative humidity (RH) and temperature, and the maximum conductivity values of 1-4 at 55 °C and 100% RH are 9.94 × 10-5, 1.62 × 10-4, 1.71 × 10-4, and 2.67 × 10-4 S·cm-1, respectively. The value of σ increases with the decrease in ionic radius, indicating that the radius of the LnIII ions can regulate the proton conductivity of these MOFs. Additionally, 2 exhibits a significant magnetocaloric effect (MCE) with a magnetic entropy change (-ΔSm) of 18.86 J kg-1 K-1 for ΔH = 7 T at 2 K, and 4 shows weak field-induced slow relaxation of magnetization. The coexistence of good fluorescence sensing capability, attractive proton conductivity, and relatively large MCE in Ln-MOFs is rare, and thus, 1-4 are potentially multifunctional MOF materials.