scispace - formally typeset
Search or ask a question

Showing papers in "International Journal of Ecology in 2012"


Journal ArticleDOI
TL;DR: Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes, and a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes is supported.
Abstract: Giant pandas (Ailuropoda melanoleuca) are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs) to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

119 citations


Journal ArticleDOI
TL;DR: Plasticity is an important consideration for studies of speciation in nature, and this topic promises fertile ground for integrating developmental biology with ecology and evolution.
Abstract: Phenotypic plasticity was once seen primarily as a constraint on adaptive evolution or merely a nuisance by geneticists. However, some biologists promote plasticity as a source of novelty and a factor in evolution on par with mutation, drift, gene flow, and selection. These claims are controversial and largely untested, but progress has been made on more modest questions about effects of plasticity on local adaptation (the first component of ecological speciation). Adaptive phenotypic plasticity can be a buffer against divergent selection. It can also facilitate colonization of new niches and rapid divergent evolution. The influence of non-adaptive plasticity has been underappreciated. Non-adaptive plasticity, too can interact with selection to promote or inhibit genetic differentiation. Finally, phenotypic plasticity of reproductive characters might directly influence evolution of reproductive isolation (the second component of ecological speciation). Plasticity can cause assortative mating, but its influence on gene flow ultimately depends on maintenance of environmental similarity between parents and offspring. Examples of plasticity influencing mating and habitat choice suggest that this, too, might be an underappreciated factor in speciation. Plasticity is an important consideration for studies of speciation in nature, and this topic promises fertile ground for integrating developmental biology with ecology and evolution.

116 citations


Journal ArticleDOI
TL;DR: The results support anecdotal evidence that dingoes may suppress exotic mesopredators, particularly foxes, and outline further research required to determine if this suppression translates into a net benefit for threatened prey species.
Abstract: An increase in mesopredators caused by the removal of top-order predators can have significant implications for threatened wildlife. Recent evidence suggests that Australia’s top-order predator, the dingo, may suppress the introduced cat and red fox. We tested this relationship by reintroducing 7 foxes and 6 feral cats into a 37 km2 fenced paddock in arid South Australia inhabited by a male and female dingo. GPS datalogger collars recorded locations of all experimental animals every 2 hours. Interactions between species, mortality rates, and postmortems were used to determine the mechanisms of any suppression. Dingoes killed all 7 foxes within 17 days of their introduction and no pre-death interactions were recorded. All 6 feral cats died between 20 and 103 days after release and dingoes were implicated in the deaths of at least 3 cats. Dingoes typically stayed with fox and cat carcasses for several hours after death and/or returned several times in ensuing days. There was no evidence of intraguild predation, interference competition was the dominant mechanism of suppression. Our results support anecdotal evidence that dingoes may suppress exotic mesopredators, particularly foxes. We outline further research required to determine if this suppression translates into a net benefit for threatened prey species.

116 citations


Journal ArticleDOI
TL;DR: It is concluded that future studies should consider host populations at variable stages of the speciation process, and explore recurrent patterns of parasitism and resistance that could pinpoint the role of parasites in imposing the divergent selection that initiates ecological speciation.
Abstract: Research on speciation and adaptive radiation has flourished during the past decades, yet factors underlying initiation of reproductive isolation often remain unknown. Parasites represent important selective agents and have received renewed attention in speciation research. We review the literature on parasite-mediated divergent selection in context of ecological speciation and present empirical evidence for three nonexclusive mechanisms by which parasites might facilitate speciation: reduced viability or fecundity of immigrants and hybrids, assortative mating as a pleiotropic by-product of host adaptation, and ecologically-based sexual selection. We emphasise the lack of research on speciation continuums, which is why no study has yet made a convincing case for parasite driven divergent evolution to initiate the emergence of reproductive isolation. We also point interest towards selection imposed by single versus multiple parasite species, conceptually linking this to strength and multifariousness of selection. Moreover, we discuss how parasites, by manipulating behaviour or impairing sensory abilities of hosts, may change the form of selection that underlies speciation. We conclude that future studies should consider host populations at variable stages of the speciation process, and explore recurrent patterns of parasitism and resistance that could pinpoint the role of parasites in imposing the divergent selection that initiates ecological speciation.

104 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the effects of landscape features and forest structure on the avian community at the Reserva Florestal Adolpho Ducke near Manaus, in the Brazilian Amazon.
Abstract: We investigated the effects of landscape features and forest structure on the avian community at the Reserva Florestal Adolpho Ducke near Manaus, in the Brazilian Amazon. We sampled the landscape and forest in 72 50 × 50 m plots systematically distributed in the reserve, covering an area of 6,400 ha. The avifauna was sampled using mist nets and acoustic surveys near the plots. We found no significant relationships between landscape features and forest components in the plots and the number of bird species and individuals sampled. Results of Principal Coordinate Analyses, however, showed that bird species composition changes along a topographic gradient (plateau-slope-valley), and also in relation to leaf litter depth and distance to forest streams. We also found compositional differences in the avian community on the eastern and western water basins that compose the reserve. Our results suggest that although most bird species occur throughout the reserve, many species track differences in the landscape and the forest structure.

90 citations


Journal ArticleDOI
TL;DR: The results indicate that period, lake physical characteristics (depth, water transparency, isolation, and habitat richness are determinants of aquatic bird community composition in the black water lake systems of Amazonia.
Abstract: For the first time, and in a large spatial scale, the influence of ecological properties on the aquatic bird community of black water lakes in Brazilian Amazonia is evaluated. Bird surveys were conducted in 45 lakes. A total of 3626 individuals in 48 bird species were recorded; of these, 31 are aquatic, and 18 of these are primarily piscivorous. Bird richness and abundance were not significantly related to lake shape and productivity but were influenced by hydrological period (low versus high), water depth, transparency, lake isolation, and habitat richness. Matrices of bird species by lake were subjected to multivariate analyses (NMDS) to evaluate how these parameters influence bird community. The variation in bird species composition was positively correlated to lake depth and isolation and negatively correlated to water transparency and habitat richness. The results indicate that period, lake physical characteristics (depth, water transparency), isolation, and habitat richness are determinants of aquatic bird community composition in the black water lake systems of Amazonia.

66 citations


Journal ArticleDOI
TL;DR: It is found that evidence for parallel ecological speciation in plants is unexpectedly scarce, especially relative to the many well-characterized systems in animals.
Abstract: Populations that have independently evolved reproductive isolation from their ancestors while remaining reproductively cohesive have undergone parallel speciation. A specific type of parallel speciation, known as parallel ecological speciation, is one of several forms of evidence for ecology's role in speciation. In this paper we search the literature for candidate examples of parallel ecological speciation in plants. We use four explicit criteria (independence, isolation, compatibility, and selection) to judge the strength of evidence for each potential case. We find that evidence for parallel ecological speciation in plants is unexpectedly scarce, especially relative to the many well-characterized systems in animals. This does not imply that ecological speciation is uncommon in plants. It only implies that evidence from parallel ecological speciation is rare. Potential explanations for the lack of convincing examples include a lack of rigorous testing and the possibility that plants are less prone to parallel ecological speciation than animals.

58 citations


Journal ArticleDOI
TL;DR: In this article, the authors synthesized the peer-reviewed literature addressing amphibian use of created and restored wetlands, focusing on aquatic habitat, upland habitat, and wetland connectivity and configuration.
Abstract: Loss and degradation of wetland habitats are major contributing factors to the global decline of amphibians. Creation and restoration of wetlands could be a valuable tool for increasing local amphibian species richness and abundance. We synthesized the peer-reviewed literature addressing amphibian use of created and restored wetlands, focusing on aquatic habitat, upland habitat, and wetland connectivity and configuration. Amphibian species richness or abundance at created and restored wetlands was either similar to or greater than reference wetlands in 89% of studies. Use of created and restored wetlands by individual species was driven by aquatic and terrestrial habitat preferences, as well as ability to disperse from source wetlands. We conclude that creating and restoring wetlands can be valuable tools for amphibian conservation. However, the ecological needs and preferences of target species must be considered to maximize the potential for successful colonization and long-term persistence.

57 citations


Journal ArticleDOI
TL;DR: It is suggested that pollinator shift through changes in floral scent is predominant among closely related species in sexually deceptive orchids, which can provide a mechanism for pollinator-driven speciation in plants, if the resulting floral isolation is strong.
Abstract: Pollinator-mediated selection has been suggested to play a major role for the origin and maintenance of the species diversity in orchids. Sexually deceptive orchids are one of the prime examples for rapid, pollinator-mediated plant radiations, with many species showing little genetic differentiation, lack of postzygotic barriers, but strong prezygotic reproductive isolation. These orchids mimic mating signals of female insects and employ male insects as pollinators. This kind of sexual mimicry leads to highly specialised pollination and provides a good system for investigating the process of pollinator-driven speciation. Here, we summarise the knowledge of key processes of speciation in this group of orchids and conduct a meta-analysis on traits that contribute to species differentiation, and thus potentially to speciation. Our study suggests that pollinator shift through changes in floral scent is predominant among closely related species in sexually deceptive orchids. Such shifts can provide a mechanism for pollinator-driven speciation in plants, if the resulting floral isolation is strong. Furthermore, changes in floral scent in these orchids are likely controlled by few genes. Together these factors suggest speciation in sexually deceptive orchids may happen rapidly and even in sympatry, which may explain the remarkable species diversity observed in this plant group.

56 citations


Journal ArticleDOI
TL;DR: The objective of this paper is to show that the new weighted Gini-Simpson index preserves the qualities of the classic Gini’s index and behaves very well when the number of species is large.
Abstract: The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity into the average within-site biodiversity and the biodiversity among sites. The standard additive partitioning of diversity requires the use of a measure of diversity, which is a concave function of the relative abundance of species, such as the Gini-Simpson index, for instance. Recently, it was noticed that the widely used Gini-Simpson index does not behave well when the number of species is very large. The objective of this paper is to show that the new weighted Gini-Simpson index preserves the qualities of the classic Gini-Simpson index and behaves very well when the number of species is large. The weights allow us to take into account the abundance of species, the phylogenetic distance between species, and the conservation values of species. This measure may also be generalized to pairs of species and, unlike Rao’s index, this measure proves to be a concave function of the joint distribution of the relative abundance of species, being suitable for use in the additive partitioning of biodiversity. The weighted Gini-Simpson index may be easily transformed for use in the multiplicative partitioning of biodiversity as well.

46 citations


Journal ArticleDOI
TL;DR: Overall, the relative rates of the two processes (specialization and reinforcement) dictate whether ecological speciation will occur, and this classification complements the one- versus two-allele classification.
Abstract: Local adaptation is the first step in the process of ecological speciation. It is, however, an unstable and dynamic situation. It can be strengthened by the occurrence of alleles more specialized to the different habitats or vanish if generalist alleles arise by mutations and increase in frequency. This process can have complicated dynamics as specialist alleles may be much more common and may maintain local adaptation for a long time. Thus, even in the absence of an absolute fitness tradeoff between habitats, local adaptation may persist a long time before vanishing. Furthermore, several feedback loops can help to maintain it (the reinforcement, demographic, and recombination loops). This reinforcement can occur by modifying one of the three fundamental steps in a sexual life cycle (dispersal, syngamy, meiosis), which promotes genetic clustering by causing specific genetic associations. Distinguishing these mechanisms complements the one- versus two-allele classification. Overall, the relative rates of the two processes (specialization and reinforcement) dictate whether ecological speciation will occur.

Journal ArticleDOI
TL;DR: Simulation of gene flow is used to validate a model of landscape resistance based on elevation, landcover, and roads that was previously related to genetic isolation among mountain goats inhabiting the Cascade Range, Washington (USA).
Abstract: Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all plausible alternative hypotheses. In this paper, rather than infer the process of gene flow from an observed genetic pattern, we simulate gene flow and determine if the simulated genetic pattern is related to the observed empirical genetic pattern. This is a form of inverse modeling and can be used to independently validate a landscape genetic model. In this study, we used this approach to validate a model of landscape resistance based on elevation, landcover, and roads that was previously related to genetic isolation among mountain goats (Oreamnos americanus) inhabiting the Cascade Range, Washington (USA). The strong relationship between the empirical and simulated patterns of genetic isolation we observed provides independent validation of the resistance model and demonstrates the utility of this approach in supporting landscape genetic inferences.

Journal ArticleDOI
TL;DR: The nature of linkages between the function of habitats and the economic activities they support is clarified, and theoretically the ways that habitat may enter the standard Gordon-Schaefer model are identified.
Abstract: This paper reviews the bioeconomic literature on habitat-fisheries connections Many such connections have been explored in the bioeconomic literature; however, missing from the literature is an analysis merging the potential influences of habitat on both fish stocks and fisheries into one general, overarching theoretical model We attempt to clarify the nature of linkages between the function of habitats and the economic activities they support More specifically, we identify theoretically the ways that habitat may enter the standard Gordon-Schaefer model, and nest these interactions in the general model Habitat influences are defined as either biophysical or bioeconomic Biophysical effects relate to the functional role of habitat in the growth of the fish stock and may be either essential or facultative to the species Bioeconomic interactions relate to the effect of habitat on fisheries and can be shown through either the harvest function or the profit function We review how habitat loss can affect stock, effort, and harvest under open access and maximum economic yield managed fisheries

Journal ArticleDOI
TL;DR: This work proposes and describes three independent criteria underlying ten different evolutionary scenarios in which habitat choice may promote or maintain local adaptation in the intertidal gastropod Littorina saxatilis, assessing whether any of the proposed scenarios can be reliably distinguished, given current research.
Abstract: The role of habitat choice in reproductive isolation and ecological speciation has often been overlooked, despite acknowledgement of its ability to facilitate local adaptation It can form part of the speciation process through various evolutionary mechanisms, yet where habitat choice has been included in models of ecological speciation little thought has been given to these underlying mechanisms Here, we propose and describe three independent criteria underlying ten different evolutionary scenarios in which habitat choice may promote or maintain local adaptation The scenarios are the result of all possible combinations of the independent criteria, providing a conceptual framework in which to discuss examples which illustrate each scenario These examples show that the different roles of habitat choice in ecological speciation have rarely been effectively distinguished Making such distinctions is an important challenge for the future, allowing better experimental design, stronger inferences and more meaningful comparisons among systems We show some of the practical difficulties involved by reviewing the current evidence for the role of habitat choice in local adaptation and reproductive isolation in the intertidal gastropod Littorina saxatilis, a model system for the study of ecological speciation, assessing whether any of the proposed scenarios can be reliably distinguished, given current research

Journal ArticleDOI
TL;DR: Data on the distribution of prey, their dietary importance, and the species-specific disparities between predicted and observed habitat distributions supports a mechanism by which kit fox distribution is derived from intense competitive interactions with coyotes.
Abstract: Many studies determine which habitat components are important to animals and the extent their use may overlap with competitive species. However, such studies are often undertaken after populations are in decline or under interspecific stress. Since habitat selection is not independent of interspecific stress, quantifying an animal's current landscape use could be misleading if the species distribution is suboptimal. We present an alternative approach by modeling the predicted distributions of two sympatric species on the landscape using dietary preferences and prey distribution. We compared the observed habitat use of kit foxes (Vulpes macrotis) and coyotes (Canis latrans) against their predicted distribution. Data included locations of kit foxes and coyotes, carnivore scat transects, and seasonal prey surveys. Although habitats demonstrated heterogeneity with respect to prey resources, only coyotes showed habitat use designed to maximize access to prey. In contrast, kit foxes used habitats which did not align closely with prey resources. Instead, habitat use by kit foxes represented spatial and behavioral strategies designed to minimize spatial overlap with coyotes while maximizing access to resources. Data on the distribution of prey, their dietary importance, and the species-specific disparities between predicted and observed habitat distributions supports a mechanism by which kit fox distribution is derived from intense competitive interactions with coyotes.

Journal ArticleDOI
TL;DR: Video-tracking measurements of duration within areas of particular seeds, and efficiency of seed predation, indicate that H. rufipes behaviour is prey dependent.
Abstract: Harpalus rufipes, a member of the Carabidae, is the most common granivorous invertebrate in Maine agroecosystems. While previous research demonstrated a positive correlation between H. rufipes activity-density and weed seed predation, little is known about the behaviour of this seed predator. We conducted mesocosm experiments to examine seed burial, soil surface conditions, and seed mass effects while tracking H. rufipes movement using a video camera, capture card, and EthoVision software. H. rufipes showed a preference (𝑃l0.001), for seeds on the soil surface compared to those half or fully buried. Species with larger seeds were preferred, but Amaranthus retroflexus, which had the smallest seeds, had the highest feeding efficiency (i.e., seeds eaten per distance travelled). Undisturbed soil resulted in highest predation rates, presumably because seeds were easier to detect relative to disturbed soil. Video-tracking measurements of duration within areas of particular seeds, and efficiency of seed predation, indicate that H. rufipes behaviour is prey dependent.

Journal ArticleDOI
TL;DR: Results support previous research showing hydrodynamic effects within a whale’s oral cavity create slight suction pressures to draw in prey or at least preclude formation of an anterior compressive bow wave that could scatter or alert prey to the presence of the approaching whale.
Abstract: Predator/prey interactions between copepods and balaenid (bowhead and right) whales were studied with controlled lab experiments using moving baleen in still water and motionless baleen in flowing water to simulate zooplankton passage toward, into, and through the balaenid oral cavity. Copepods showed a lesser escape response to baleen and to a model head simulating balaenid oral hydrodynamics than to other objects. Copepod escape response increased as water flow and body size increased and was greatest at distances ≥10 cm from baleen and at copepod density = 10,000 m−3. Data from light/dark experiments suggest that escape is based on mechanoreception, not vision. The model head captured 88% of copepods. Results support previous research showing hydrodynamic effects within a whale’s oral cavity create slight suction pressures to draw in prey or at least preclude formation of an anterior compressive bow wave that could scatter or alert prey to the presence of the approaching whale.

Journal ArticleDOI
TL;DR: In this article, the authors present a method for the identification of the genes of a specific species of plants from a set of genes extracted from a single plant from the soil of a single island in Portugal.
Abstract: 1CNRS, UMR 7205, Museum National d’Histoire Naturelle, 45 Rue Buffon, CP50, 75005 Paris, France 2CIBIO/UP—Centro de Investigacao em Biodiversidade e Recursos Geneticos, Universidade do Porto, Campus Agrario de Vairao, R. Monte-Crasto, 4485-661 Vairao, Portugal 3 IBE—Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Avenue Doctor Aiguader N88, 08003 Barcelona, Spain 4Department of Botany, 3165, University of Wyoming, 1000 East University Avenue Laramie, WY 82071, USA 5Redpath Museum and Department of Biology, McGill University, 859 Sherbrooke Street West Montreal, QC, Canada H3A 2K6

Journal ArticleDOI
TL;DR: It is argued that facilitation is likely to maintain gene flow among incipient species by enabling cooccurrence of adapted and maladapted forms in marginal habitats and increase fitness of introgressed forms and limit reinforcement in secondary contact zones and therefore, facilitation may impede or pave the way for ecological speciation.
Abstract: Compared to the vast literature linking competitive interactions and speciation, attempts to understand the role of facilitation for evolutionary diversification remain scarce. Yet, community ecologists now recognize the importance of positive interactions within plant communities. Here, we examine how facilitation may interfere with the mechanisms of ecological speciation. We argue that facilitation is likely to (1) maintain gene flow among incipient species by enabling cooccurrence of adapted and maladapted forms in marginal habitats and (2) increase fitness of introgressed forms and limit reinforcement in secondary contact zones. Alternatively, we present how facilitation may favour colonization of marginal habitats and thus enhance local adaptation and ecological speciation. Therefore, facilitation may impede or pave the way for ecological speciation. Using a simple spatially and genetically explicit modelling framework, we illustrate and propose some first testable ideas about how, when, and where facilitation may act as a cohesive force for ecological speciation. These hypotheses and the modelling framework proposed should stimulate further empirical and theoretical research examining the role of both competitive and positive interactions in the formation of incipient species.

Journal ArticleDOI
TL;DR: The results of a standard “no-choice” laboratory experiment on common-garden fish revealed no evidence for positive assortative mating in stickleback, reminding us that divergent natural selection may not inevitably lead to the evolution of positiveAssortative mate choice.
Abstract: In ecological speciation, reproductive isolation evolves as a consequence of adaptation to different selective environments. A frequent contributor to this process is the evolution of positive assortative mate choice between ecotypes. We tested this expectation for lake and inlet stream threespine stickleback (Gasterosteus aculeatus) from the Misty system (Vancouver Island, Canada), which show strong genetically based adaptive divergence and little genetic exchange in nature. This, and work on other stickleback systems, led us to expect positive assortative mating. Yet, our standard “no-choice” laboratory experiment on common-garden fish revealed no evidence for this—despite divergence in traits typically mediating assortative mating in stickleback. These results remind us that divergent natural selection may not inevitably lead to the evolution of positive assortative mate choice. The apparent lack of strong and symmetric reproductive barriers in this system presents a conundrum: why are such barriers not evident despite strong adaptive divergence and low gene flow in nature?

Journal ArticleDOI
TL;DR: In this paper, natural stream channel design principles and riparian restoration practices were applied during spring 2010 to an agriculturally impaired reach of the Cacapon River, a tributary of the Potomac River which flows into the Chesapeake Bay.
Abstract: Natural stream channel design principles and riparian restoration practices were applied during spring 2010 to an agriculturally impaired reach of the Cacapon River, a tributary of the Potomac River which flows into the Chesapeake Bay. Aquatic macroinvertebrates and fishes were sampled from the restoration reach, two degraded control, and two natural reference reaches prior to, concurrently with, and following restoration (2009 through 2010). Collector filterers and scrapers replaced collector gatherers as the dominant macroinvertebrate functional feeding groups in the restoration reach. Before restoration, based on indices of biotic integrity (IBI), the restoration reach fish and macroinvertebrate communities closely resembled those sampled from the control reaches, and after restoration more closely resembled those from the reference reaches. Although the macroinvertebrate community responded more favorably than the fish community, both communities recovered quickly from the temporary impairment caused by the disturbance of restoration procedures and suggest rapid improvement in local ecological conditions.

Journal ArticleDOI
TL;DR: A novel tiered forward selection approach is proposed, based on a mixed model for species biomass, which identifies the important trait-environment relationship and complements this with an alternative selection method, namely, type II maximum likelihood.
Abstract: To understand patterns of variation in species biomass in terms of species traits and environmental variables a one-to-one approach might not be sufficient, and a multitrait multienvironment approach will be necessary. A multitrait multienvironment approach is proposed, based on a mixed model for species biomass. In the model, environmental variables are species-dependent random terms, whereas traits are fixed terms, and trait-environment relationships are fixed interaction terms. In this approach, identifying the important trait-environment relationship becomes a model selection problem. Because of the mix of fixed and random terms, we propose a novel tiered forward selection approach for this. In the first tier, the random factors are selected; in the second, the fixed effects; in the final tier, nonsignificant terms are removed using a modified Akaike information criterion. We complement this tiered selection with an alternative selection method, namely, type II maximum likelihood. A mesocosm experiment on early community assembly in wetlands with three two-level environmental factors is analyzed by the new approach. The results are compared with the fourth corner problem and the linear trait-environment method. Traits related to germination and seedling establishment are selected as being most important in the community assembly in these wetland mesocosms.

Journal ArticleDOI
TL;DR: Terminological issues about biological variation and ecological speciation, especially in herbivorous insects but also more generally are focused on, with a case study in which Neochlamisus leaf beetle populations previously described as host forms are hereby declared to be host races, based on accumulated evidence supporting each of the associated criteria.
Abstract: Successful communication and accurate inferences in science depend on the common understanding and consistent usage of the terms we apply to concepts of interest. Likewise, new terminology is required when important concepts have gone unnamed. Here, I focus on terminological issues about biological variation and ecological speciation, especially in herbivorous insects but also more generally. I call for the more restricted use of concepts that have sometimes been misapplied, and thus caution against synonymizing ecological speciation with sympatric speciation and the unwarranted invocation of “host races” to describe herbivorous insect differentiation. I also call for the qualified application of terms for different kinds of biological variation and for host range when confronting uncertainty. Among other “missing terms” introduced here is “host form,” a generic term describing any case of host-associated differences for which current evidence does not allow diagnosis of the specific kind of variation. Embracing the use of host form should free host race from its current overapplication. Finally, I present a case study in which Neochlamisus leaf beetle populations previously described as host forms are hereby declared to be host races, based on accumulated evidence supporting each of the associated criteria.

Journal ArticleDOI
TL;DR: Potential primary morphological factors controlling the early diversification process in some Neotropical characiforms are explored as the first step to identifying factors contributing to the pronounced intraordinal morphological and species diversity.
Abstract: Morphological and DNA sequence data has been used to propose hypotheses of relationships within the Characiformes with minimal comparative discussion of causes underpinning the major intraordinal diversification patterns. We explore potential primary morphological factors controlling the early diversification process in some Neotropical characiforms as the first step to identifying factors contributing to the pronounced intraordinal morphological and species diversity. A phylogenetic reconstruction based on 16S rDNA (mitochondrial) and 18S rDNA (nuclear) genes provided the framework for the identification of the main morphological differences among the Acestrorhynchidae, Anostomidae, Characidae, Ctenoluciidae, Curimatidae, Cynodontidae, Gasteropelecidae, Prochilodontidae and Serrasalmidae. Results indicate an initial split into two major groupings: (i) species with long dorsal-fin bases relative to the size of other fins (Curimatidae, Prochilodontidae, Anostomidae, Serrasalmidae) which primarily inhabit lakes, swamps, and rivers (lineage I); and (ii) species with short dorsal-fin bases (Acestrorhynchidae, Gasteropelecidae, Characidae) which primarily inhabit creeks and streams (lineage II). The second diversification stage in lineage I involved substantial morphological diversification associated with trophic niche differences among the monophyletic families which range from detritivores to large item predators. Nonmonophyly of the Characidae complicated within lineage II analyzes but yielded groupings based on differences in pectoral and anal fin sizes correlated with life style differences.

Journal ArticleDOI
TL;DR: NPK and coconut fiber were shown to be significantly effective to enhance initial tree growths in heavily eroded area as revealed from the water, sediment and biological analysis.
Abstract: The study site is currently retreating at a rate of 20 m y−1 due to severe coastal erosion and found to be highly polluted as revealed from the water, sediment and biological analysis. In an attempt to prevent coastal erosion, 14,000 Rhizophora mucronata (RM) trees were planted across a heavily eroded shoreline at Samut Sakhon, Thailand. The survival rate of RM was high at the landward area and decreased at the offshore area. The most landward plot showed the highest survival rate when measured 4 years after planting (63.5%), while only 26.7% of trees survived at the most offshore plot. NPK and coconut fiber were shown to be significantly effective to enhance initial tree growths in heavily eroded area.

Journal ArticleDOI
TL;DR: It is concluded that the among-year survival pattern of juvenile forest grouse may largely be determined by raptor predation, with some support for APH.
Abstract: We investigated predation rates of black grouse chicks during 1985–2007 in two localities in western Finland in light of three predation hypothesis: The Alternative Prey Hypothesis (APH) stating that vole-eating generalist predators cause a collapse in grouse reproduction after voles’ decline, the Main Prey Hypothesis (MPH), where grouse specialised predators by a lagged response cause an inversely density dependent predation for prey and the Predation Facilitation Hypothesis (PFH), where generalist and specialist predators act in concert. We also studied the effect of weather on grouse reproduction. We found that buzzard predation alone did not support APH, but did so when combined with goshawk predation. Kill rate by goshawks showed a linear response for black grouse chicks but was not density dependent. It, however, explained the losses of chicks but not their autumn density. Combined density of chicks with adults correlated with vole index in the latter study period (since 1994), thus, giving some support for APH. Weather seemed to have no effect on black grouse reproduction. Although buzzards and goshawks took, on average, only 10% of hatched grouse chicks we conclude that the among-year survival pattern of juvenile forest grouse may largely be determined by raptor predation.

Journal ArticleDOI
TL;DR: This work presents current evidence for habitat avoidance, emphasizing phytophagous insects, and new results for parasitoid wasps consistent with the avoidance hypothesis, and discusses avenues for further study, including other potential roles for avoidance behavior in speciation related to sexual selection and reinforcement.
Abstract: Habitat choice is an important component of most models of ecologically based speciation, especially when population divergence occurs in the face of gene flow. We examine how organisms choose habitats and ask whether avoidance behavior plays an important role in habitat choice, focusing on host-specific phytophagous insects as model systems. We contend that when a component of habitat choice involves avoidance, there can be repercussions that can have consequences for enhancing the potential for specialization and postzygotic reproductive isolation and, hence, for ecological speciation. We discuss theoretical and empirical reasons for why avoidance behavior has not been fully recognized as a key element in habitat choice and ecological speciation. We present current evidence for habitat avoidance, emphasizing phytophagous insects, and new results for parasitoid wasps consistent with the avoidance hypothesis. We conclude by discussing avenues for further study, including other potential roles for avoidance behavior in speciation related to sexual selection and reinforcement.

Journal ArticleDOI
TL;DR: A generalization of Ripley's K function is generalized to get a new function, M, to characterize the spatial structure of a point pattern relatively to another one, which is pertinent in ecology when space is not homogenous and the size of objects matters.
Abstract: We generalize Ripley's K function to get a new function, M, to characterize the spatial structure of a point pattern relatively to another one. We show that this new approach is pertinent in ecology when space is not homogenous and the size of objects matters. We present how to use the function and test the data against the null hypothesis of independence between points. In a tropical tree data set we detect intraspecific aggregation and interspecific competition.

Journal ArticleDOI
TL;DR: Host-plant-mediated assortative mating demonstrates that habitat isolation likely plays an important role in promoting reproductive isolation among populations of this host-specific gall former.
Abstract: Habitat isolation occurs when habitat preferences lower the probability of mating between individuals associated with differing habitats. While a potential barrier to gene flow during ecological speciation, the effect of habitat isolation on reproductive isolation has rarely been directly tested. Herein, we first estimated habitat preference for each of six populations of the gall wasp Belonocnema treatae inhabiting either Quercus virginiana or Q. geminata. We then estimated the importance of habitat isolation in generating reproductive isolation between B. treatae populations that were host specific to either Q. virginiana or Q. geminata by measuring mate preference in the presence and absence of the respective host plants. All populations exhibited host preference for their native plant, and assortative mating increased significantly in the presence of the respective host plants. This host-plant-mediated assortative mating demonstrates that habitat isolation likely plays an important role in promoting reproductive isolation among populations of this host-specific gall former.

Journal ArticleDOI
TL;DR: Investigating the influence of planting sites on the establishment and ectomycorrhizal colonization of American chestnut on an abandoned coal mine indicated that the presence of P. virginiana had a greater facilitative effect on growth and survival of chestnut seedlings.
Abstract: This study evaluated the influence of planting sites on the establishment and ectomycorrhizal (ECM) colonization of American chestnut (Castanea denetata (Marsh.) Borkh.) on an abandoned coal mine in an Appalachian region of the United States. Root morphotyping and sequencing of the fungal internal transcribed spacer (ITS) region were used to identify the ECM species associated with the chestnut seedlings. Germination, survival, ECM root colonization, and growth were assessed in three habitats: forest edge, center (plots without vegetation), and pine plots (a 10-year-old planting of Pinus virginiana). Seedlings in pine plots had higher survival (38%) than the other plot types (center 9% and forest edge 5%; ). Chestnuts found colonized by ECM within the pine plots were larger (), contributed by a larger root system (). Forest edge and pine plots had more ECM roots than seedlings in center plots (). ITS fungal sequences and morphotypes found among chestnut and pine matched Scleroderma, Thelephora, and Pisolithus suggesting these two plant species shared ECM symbionts. Results indicated that the presence of P. virginiana had a greater facilitative effect on growth and survival of chestnut seedlings.