scispace - formally typeset

Institution

Swiss Federal Institute of Aquatic Science and Technology

FacilityDübendorf, Switzerland
About: Swiss Federal Institute of Aquatic Science and Technology is a(n) facility organization based out in Dübendorf, Switzerland. It is known for research contribution in the topic(s): Population & Wastewater. The organization has 3048 authors who have published 7282 publication(s) receiving 449534 citation(s). The organization is also known as: Swiss Federal Institute of Aquatic Science and Technology & EAWAG.


Papers
More filters
Journal ArticleDOI
TL;DR: This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities and advocates continuing attempts to check species loss but urges adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods.
Abstract: Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.

4,936 citations

Journal ArticleDOI
30 Sep 2010-Nature
TL;DR: The first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts is presented.
Abstract: Protecting the world’s freshwater resources requires diagnosing threats over a broad range of scales, from global to local. Here we present the first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts. We find that nearly 80% of the world’s population is exposed to high levels of threat to water security. Massive investment in water technology enables rich nations to offset high stressor levels without remedying their underlying causes, whereas less wealthy nations remain vulnerable. A similar lack of precautionary investment jeopardizes biodiversity, with habitats associated with 65% of continental discharge classified as moderately to highly threatened. The cumulative threat framework offers a tool for prioritizing policy and management responses to this crisis, and underscores the necessity of limiting threats at their source instead of through costly remediation of symptoms in order to assure global water security for both humans and freshwater biodiversity.

4,505 citations

Journal ArticleDOI
Abstract: Five test runs were performed to assess possible bias when performing the loss on ignition (LOI) method to estimate organic matter and carbonate content of lake sediments. An accurate and stable weight loss was achieved after 2 h of burning pure CaCO3 at 950 °C, whereas LOI of pure graphite at 530 °C showed a direct relation to sample size and exposure time, with only 40-70% of the possible weight loss reached after 2 h of exposure and smaller samples losing weight faster than larger ones. Experiments with a standardised lake sediment revealed a strong initial weight loss at 550 °C, but samples continued to lose weight at a slow rate at exposure of up to 64 h, which was likely the effect of loss of volatile salts, structural water of clay minerals or metal oxides, or of inorganic carbon after the initial burning of organic matter. A further test-run revealed that at 550 °C samples in the centre of the furnace lost more weight than marginal samples. At 950 °C this pattern was still apparent but the differences became negligible. Again, LOI was dependent on sample size. An analytical LOI quality control experiment including ten different laboratories was carried out using each laboratory's own LOI procedure as well as a standardised LOI procedure to analyse three different sediments. The range of LOI values between laboratories measured at 550 °C was generally larger when each laboratory used its own method than when using the standard method. This was similar for 950 °C, although the range of values tended to be smaller. The within-laboratory range of LOI measurements for a given sediment was generally small. Comparisons of the results of the individual and the standardised method suggest that there is a laboratory-specific pattern in the results, probably due to differences in laboratory equipment and/or handling that could not be eliminated by standardising the LOI procedure. Factors such as sample size, exposure time, position of samples in the furnace and the laboratory measuring affected LOI results, with LOI at 550 °C being more susceptible to these factors than LOI at 950 °C. We, therefore, recommend analysts to be consistent in the LOI method used in relation to the ignition temperatures, exposure times, and the sample size and to include information on these three parameters when referring to the method.

3,664 citations

Journal ArticleDOI
25 Aug 2006-Science
TL;DR: There are three scientific challenges in addressing water-quality problems caused by micropollutants, and usage and disposal strategies should aim to minimize introduction of critical pollutants into the aquatic environment.
Abstract: The increasing worldwide contamination of freshwater systems with thousands of industrial and natural chemical compounds is one of the key environmental problems facing humanity. Although most of these compounds are present at low concentrations, many of them raise considerable toxicological concerns, particularly when present as components of complex mixtures. Here we review three scientific challenges in addressing water-quality problems caused by such micropollutants. First, tools to assess the impact of these pollutants on aquatic life and human health must be further developed and refined. Second, cost-effective and appropriate remediation and water-treatment technologies must be explored and implemented. Third, usage and disposal strategies, coupled with the search for environmentally more benign products and processes, should aim to minimize introduction of critical pollutants into the aquatic environment.

2,531 citations

Journal ArticleDOI
Abstract: The tracer-diffusion coefficient of ions in water, Dj0, and in sea water, Dj∗, differ by no more than zero to 8 per cent. When sea water diffuses into a dilute solution of water, in order to maintain the electro-neutrality, the average diffusion coefficients of major cations become greater but of major anions smaller than their respective Dj∗ or Dj0 values. The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj∗ by Dj,sed. = Dj∗ · αθ2, where θ is the tortuosity of the bulk sediment and a a constant close to one.

2,529 citations


Authors

Showing all 3048 results

NameH-indexPapersCitations
Jizhong Zhou11576648708
Alex N. Halliday10442331802
John P. Sumpter10126646184
Urs von Gunten9426633535
Bruce E. Rittmann9269338520
Pedro J. J. Alvarez8937834837
Praveen Kumar88133935718
Thomas S. Kupper8631425409
Peter H. Santschi8031920707
Scott Fendorf7924421035
Alexander J. B. Zehnder7818823933
Klement Tockner7722923368
Willem Norde7523721602
Thomas A. Ternes7522330515
Beate I. Escher7429418425
Network Information
Related Institutions (5)
United States Environmental Protection Agency

26.9K papers, 1.1M citations

91% related

Wageningen University and Research Centre

54.8K papers, 2.6M citations

90% related

United States Geological Survey

51K papers, 2.4M citations

89% related

Leibniz Association

35.6K papers, 1M citations

88% related

University of Bayreuth

25.1K papers, 811.3K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202214
2021510
2020468
2019509
2018436
2017417