scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Fluid Mechanics in 1977"


Journal ArticleDOI
TL;DR: In this article, the effect of Brownian motion on the probability density of the separation vector of rigid spherical particles in a dilute suspension is investigated and an explicit expression for this leading approximation is constructed in terms of hydrodynamic interactions between pairs of particles.
Abstract: The effect of Brownian motion of particles in a statistically homogeneous suspension is to tend to make uniform the joint probability density functions for the relative positions of particles, in opposition to the tendency of a deforming motion of the suspension to make some particle configurations more common. This smoothing process of Brownian motion can be represented by the action of coupled or interactive steady ‘thermodynamic’ forces on the particles, which have two effects relevant to the bulk stress in the suspension. Firstly, the system of thermodynamic forces on particles makes a direct contribution to the bulk stress; and, secondly, thermodynamic forces change the statistical properties of the relative positions of particles and so affect the bulk stress indirectly. These two effects are analysed for a suspension of rigid spherical particles. In the case of a dilute suspension both the direct and indirect contributions to the bulk stress due to Brownian motion are of order o2, where o([Lt ] 1) is the volume fraction of the particles, and an explicit expression for this leading approximation is constructed in terms of hydrodynamic interactions between pairs of particles. The differential equation representing the effects of the bulk deforming motion and the Brownian motion on the probability density of the separation vector of particle pairs in a dilute suspension is also investigated, and is solved numerically for the case of relatively strong Brownian motion. The suspension has approximately isotropic structure in this case, regardless of the nature of the bulk flow, and the effective viscosity representing the stress system to order ϕ2 is found to be \[ \mu^{*} = \mu(1+2.5\phi + 6.2\phi^2). \] The value of the coefficient of o2 for steady pure straining motion in the case of weak Brownian motion is known to be 7[sdot ]6, which indicates a small degree of ‘strain thickening’ in the o2-term.

1,956 citations


Journal ArticleDOI
TL;DR: In this article, three types of homogeneous anisotropic turbulence were produced by the plane distortion, axisymmetric expansion and axisymetric contraction of grid-generated turbulence, and their behaviour in returning to isotropy was experimentally studied using hot-wire anemometry.
Abstract: Three types of homogeneous anisotropic turbulence were produced by the plane distortion, axisymmetric expansion and axisymmetric contraction of grid-generated turbulence, and their behaviour in returning to isotropy was experimentally studied using hot-wire anemometry. It was found that the turbulence trajectory after the plane distortion was highly nonlinear, and did not follow Rotta's linear model in returning to isotropy. The turbulence wanted to become axisymmetric even more than it wanted to return to isotropy. In order to show the rate of return to isotropy of homogeneous turbulence, a map of the ratio of the characteristic time scale for the decay of turbulent kinetic energy to that of the return to isotropy was constructed. This demonstrated that the rate of return to isotropy was much lower for turbulence with a greater third invariant of the anisotropy tensor. The invariant technique was then applied to the experimental results to develop a new turbulence model for the return-to-isotropy term in the Reynolds stress equation which satisfied the realizability conditions. The effect of the Reynolds number on the rate of return to isotropy was also investigated and the results incorporated in the proposed model.

673 citations


Journal ArticleDOI
TL;DR: In this article, an experimental investigation of the flow around surface mounted cubes in both uniform, irrotational and sheared, turbulent flows is described, and comparisons with the somewhat sparse measurements of previous workers are made and the relevance of recent theoretical attempts to describe the flow, as opposed to numerical calculation techniques to predict it, is briefly discussed.
Abstract: An experimental investigation of the flow around surface-mounted cubes in both uniform, irrotational and sheared, turbulent flows is described. The shear flow was a simulated atmospheric boundary layer with a height ten times the body dimension. Measurements of body surface pressures and mean and fluctuating velocities within the wake are presented. In the latter case a pulsed-wire anemometer was used extensively since the turbulent intensities were much too high for effective use of more standard instrumentation. The clear effects of upstream turbulence and shear on the wake flow are described, comparisons with the somewhat sparse measurements of previous workers are made and the relevance of recent theoretical attempts to describe the flow, as opposed to numerical calculation techniques to predict it, is briefly discussed.

639 citations


Journal ArticleDOI
TL;DR: In this article, a visualization method is used to obtain the main features of the hydrodynamic field for flow past a circular cylinder moving at a uniform speed in a direction perpendicular to its generating lines in a tank filled with a viscous liquid.
Abstract: A visualization method is used to obtain the main features of the hydrodynamic field for flow past a circular cylinder moving at a uniform speed in a direction perpendicular to its generating lines in a tank filled with a viscous liquid. Photographs are presented to show the particular fineness of the experimental technique. More especially, the closed wake and the velocity distribution behind the obstacle are investigated; the changes in the geometrical parameters describing the eddies with Reynolds number (5 < Re < 40) and with the ratio λ between the diameters of the cylinder and tank are given. A comparison with existing numerical and experimental results is presented and some remarks are made about the calculation techniques proposed up to the present. The limits of the Reynolds-number range for which the twin vortices exist and adhere stably to the cylinder are determined.

622 citations


Journal ArticleDOI
C. J. Moore1
TL;DR: In this article, large-scale structures in the form of instability waves are shown to be present in an acoustically and aerodynamically well behaved jet even at high Mach numbers.
Abstract: Large-scale structures in the form of instability waves are an inherent part of a shearlayer mixing process. Such structures are shown to be present in an acoustically and aerodynamically well behaved jet even at high Mach numbers. They do not directly radiate significant acoustic power in a subsonic jet, but do govern the production of the turbulent fluctuations which radiate broad-band jet noise. Over the whole subsonic Mach number range, a significant increase in jet noise can be produced by exciting the shear layer with a fluctuating pressure at the nozzle of only 0·08 % of the jet dynamic head but with the correct Strouhal number. Such excitation by internal acoustic, aerodynamic or thermal fluctuations could explain the variability of jet noise measurements between different rigs and could also be responsible for some components of ‘excess’ noise.

484 citations


Journal ArticleDOI
TL;DR: In this paper, a self-diffusion coefficient for lateral dispersion of spherical and disk-like particles in linear shear flow of a slurry at very low Reynolds number was determined experimentally.
Abstract: Self-diffusion coefficients were determined experimentally for lateral dispersion of spherical and disk-like particles in linear shear flow of a slurry at very low Reynolds number. Using a concentric-cylinder Couette apparatus, recurrent observations were made of the lateral position of a particular radioactively labelled particle. The self-diffusion coefficient D was calculated by means of random-walk theory, using the ergodic hypothesis. Owing to great experimental difficulties, the calculated values of D are not of high accuracy, but are correct to within a factor of two. In the range 0 < ϕ < 0·2, D/a2ω increases from zero linearly with ϕ up to D/a2ω ≅ 0·02 (where ϕ = volumetric concentration of particles, a = particle radius, ω = mean shear rate of suspending fluid). In the range 0·2 < 0·5, the trend of D/a2ω is not clear because of experimental scatter, but in this range D/a2ω ≅ 0·025 to within a factor of two. Within the experimental accuracy, spheres and disks have the same value of D/a2ω.

427 citations


Journal ArticleDOI
TL;DR: In this article, the Stokes capillary-gravity wave train is studied and the evolution of a packet is described by two partial differential equations: the nonlinear Schroedinger equation with a forcing term and a linear equation, which is of either elliptic or hyperbolic type depending on whether the group velocity of the capillary gravity wave is less than or greater than the velocity of long gravity waves.
Abstract: The motion of a two-dimensional packet of capillary-gravity waves on water of finite depth is studied. The evolution of a packet is described by two partial differential equations: the nonlinear Schroedinger equation with a forcing term and a linear equation, which is of either elliptic or hyperbolic type depending on whether the group velocity of the capillary-gravity wave is less than or greater than the velocity of long gravity waves. These equations are used to examine the stability of the Stokes capillary-gravity wave train. The analysis reveals the existence of a resonant interaction between a capillary-gravity wave and a long gravity wave. The interaction requires that the liquid depth be small in comparison with the wavelength of the (long) gravity waves and the evolution equations describing the dynamics of this interaction are derived.

406 citations


Journal ArticleDOI
TL;DR: A series of experiments designed to reveal the properties of high Reynolds number vortex rings, using flow-visualization and laser-Doppler techniques, has uncovered several interesting and unexpected results as mentioned in this paper.
Abstract: A series of experiments designed to reveal the properties of high Reynolds number vortex rings, using flow-visualization and laser-Doppler techniques, has uncovered several interesting and unexpected results. Starting at the beginning of the motion, at a nozzle, and proceeding downstream, these include the following. A formation process that is strongly Reynolds number dependent.The amount of vorticity that appears downstream is very close to that predicted by a simple ‘slug’ model. However flow-visualization studies show that such a model is an oversimplification and that an excess of ring vorticity is probably cancelled by the ingestion of vorticity of opposite sign at the nozzle lip.(iii) A new, bimodal form of vortex-core instability has been observed at moderate but not high Reynolds numbers.Azimuthal inhomogeneities in the breaking of these, and the normal instability waves, create an ‘axial’ flow along the vortex core in the turbulent ring. This axial flow takes the form of a propagating wave that has many characteristics of a solitary wave. It is hypothesized that this axial flow prevents further ring instability.The long-term behaviour of the turbulent ring is marked by dramatic changes in its growth rate, which are probably related to changes in the ‘organization’ of the vortex core. The descriptive turbulent-ring model developed in Maxworthy (1974) is substantially confirmed by these experiments and by observation of ring propagation through a stratified ambient fluid.

373 citations


Journal ArticleDOI
TL;DR: In this article, an experimental investigation of the evolution of a nonlinear wave train on deep water is reported, and the initial stage of evolution is characterized by exponential growth of a modulational instability, as was first discovered by Benjamin'Feir.
Abstract: Results of an experimental investigation of the evolution of a nonlinear wave train on deep water are reported. The initial stage of evolution is found to be characterized by exponential growth of a modulational instability, as was first discovered by Benjamin ' Feir. At later stages of evolution it is found that the instability does not lead to wave-train disintegration or loss of coherence. Instead, the modulation periodically increases and decreases, and the wave train exhibits the Fermi–Pasta–Ulam recurrence phenomenon. Results of an earlier study of nonlinear wave packets by Yuen ' Lake, in which solutions of the nonlinear Schrodinger equation were shown to provide quantitatively correct descriptions of the properties of nonlinear wave packets, are applied to describe the experimentally observed wave-train phenomena. A comparison between the laboratory data and numerical solutions of the nonlinear Schrodinger equation for the long-time evolution of nonlinear wave trains is given.

365 citations


Journal ArticleDOI
TL;DR: In this paper, the authors use the conditional probability distribution of the Reynolds stress − uv, which can be derived by applying the cumulant discard method to the Gram-Charlier probability distribution for two variables u and v.
Abstract: In this paper we intend to predict the magnitude of the contribution to the Reynolds stress of bursting events: ‘ejections’, ‘sweeps’, ‘inward interactions’ and ‘outward interactions’. We shall do this by making use of the conditional probability distribution of the Reynolds stress − uv, which can be derived by applying the cumulant-discard method to the Gram-Charlier probability distribution of the two variables u and v. The Reynolds-stress fluctuations in openchannel flows over smooth and rough beds are measured by dual-sensor hot-film anemometers, whose signals are conditionally sampled and sorted into the four quadrants of the u, v plane by using a high-speed digital data processing system.We shall verify that even the third-order conditional probability distribution of the Reynolds stress shows fairly good agreement with the experimental results and that the sequence of events in the bursting process, i.e. ejections, sweeps and interactions, is directly related to the turbulent energy budget in the form of turbulent diffusion. Also, we shall show that the roughness effect is marked in the area from the wall to the middle of the equilibrium region, and that sweeps appear to be more important than ejections as the roughness increases and as the distance from the wall decreases.

363 citations


Journal ArticleDOI
TL;DR: In this paper, high-speed motion pictures (2000 frames/s) of saltating spherical glass microbeads (of diameter 350-710 μm and density 2·5 g/cm3) were taken in an environmental wind tunnel to simulate the planetary boundary layer.
Abstract: High-speed motion pictures (2000 frames/s) of saltating spherical glass microbeads (of diameter 350–710 μm and density 2·5 g/cm3) were taken in an environmental wind tunnel to simulate the planetary boundary layer. Analysis of the experimental particle trajectories show the presence of a substantial lifting force in the intermediate stages of the trajectories. Numerical integration of the equations of motion including a Magnus lifting force produced good agreement with experiment. Typical spin rates were of the order of several hundred revolutions per second and some limited experimental proof of this is presented. Average values and frequency distributions for liftoff and impact angles are also presented. The average lift-off and impact angles for the experiments were 50° and 14° respectively. A semi-empirical procedure for determining the average trajectory associated with given conditions is developed.

Journal ArticleDOI
TL;DR: In this article, the same prescription is applied to fields averaged with one particle fixed, and equations are produced containing a term averaged with two particles fixed and so on up an infinite hierarchy.
Abstract: Earlier ideas are combined to produce a systematic approach both to forming the bulk equations of motion of a dilute suspension and to calculating the overall hydrodynamic interactions between the suspended particles. Equations governing averaged field quantities are derived by taking ensemble averages of the conservation laws and constitutive relations. The bulk equations thus produced contain a term in which the averaging is performed holding one particle fixed. If now the same prescription is applied to fields averaged with one particle fixed, equations are produced containing a term averaged with two particles fixed, and so on up an infinite hierarchy. The hierarchy can be truncated in an asymptotic analysis for small particle concentrations. This approach to the mechanics of suspensions is illustrated by applying it to three problems which have already been well studied by different methods. The problems concern the first effects of hydrodynamic interactions on the bulk stress and sedimontation velocity of a free suspension, and on the permeability of a fixed bed. Earlier results are recovered in a new light. Multiparticle effects, which before have occurred as divergent sums, are seen to arise because the suspension described by the averaged equations assumes a viscosity and density different from the solvent, or in the case of the fixed bed because the suspension starts behaving as a porous medium instead of as a Newtonian solvent. A close connexion is thus revealed between the averaged-equation description of the interactions and a self-consistentfield model.

Journal ArticleDOI
TL;DR: In this article, the steady-state Navier-Stokes equations in three dimensions have been obtained by a numerical method for the problem of natural convection in a rectangular cavity as a result of differential side heating.
Abstract: The solution of the steady-state Navier–Stokes equations in three dimensions has been obtained by a numerical method for the problem of natural convection in a rectangular cavity as a result of differential side heating. In the past, this problem has generally been treated as though it were two-dimensional. The solutions explore the three-dimensional motion generated by the presence of no-slip adiabatic end walls. For Ra = 10 4 , the three-dimensional motion is shown to be the result of the inertial interaction of the rotating flow with the stationary walls together with a contribution arising from buoyancy forces generated by longitudinal temperature gradients. The inertial effect is inversely dependent on the Prandtl number, whereas the thermal effect is nearly constant. For higher values of Ra , multiple longitudinal flows develop which are a delicate function of Ra, Pr and the cavity aspect ratios.

Journal ArticleDOI
TL;DR: In this article, the transmission of sound out of a semi-infinite circular jet pipe in the presence of subsonic flow from the pipe is investigated and a solution satisfying the Kutta condition and causality is found which possesses an instability wave term that dominates within a region of approximately 45° to the downstream jet axis.
Abstract: The transmission of sound out of a semi-infinite circular jet pipe in the presence of subsonic flow from the pipe is investigated. An unstable cylindrical vortex layer attached to the edge of the pipe is considered across which differences in mean subsonic flow, density and temperature are included. A solution satisfying the Kutta condition and causality is found which possesses an instability wave term that dominates within a region of approximately 45° to the downstream jet axis. It is shown that when an exterior flow is imposed the noise level increases upstream whilst the instability wave weakens downstream. The stable part of the solution is shown to agree very well with some recent experimental results.

Journal ArticleDOI
TL;DR: In this article, the effect of a slip coefficient on the flow in the neighbourhood of the contact line was examined, and the contribution of the vicinity of a contact line to the force on the boundary was obtained.
Abstract: If the no-slip condition is used to determine the flow produced when a fluid interface moves along a solid boundary, a non-integrable stress is obtained. In part 1 of this study (Hocking 1976), it was argued that, when allowance was made for the presence of irregularities on the solid boundary, an effective slip coefficient could be found, which might remove the difficulty.This paper examines the effect of a slip coefficient on the flow in the neighbourhood of the contact line. Particular cases which are solved in detail are liquid–gas interfaces at an arbitrary angle, and normal contact of fluids of arbitrary viscosity. The contribution of the vicinity of the contact line to the force on the boundary is obtained.The inner region, near the contact line, must be matched with an outer flow, in which the no-slip condition can be applied, in order to obtain the total value of the force on the boundary. This force is determined for the flow of two fluids between parallel plates and in a pipe, with a plane interface. The enhanced resistance produced by the presence of the interface is calculated, and it is shown to be equivalent to an increase in the length of the column of fluid by a small multiple of the pipe radius.

Journal ArticleDOI
TL;DR: In this paper, the authors studied three-dimensional homogeneous isotropic turbulence at very high Reynolds number R using a variant of the Markovian eddy-damped quasi-normal theory.
Abstract: Three-dimensional homogeneous isotropic turbulence at very high Reynolds number R is studied using a variant of the Markovian eddy-damped quasi-normal theory. In the case without helicity, numerical calculations indicate the development of a inertial range in the energy spectrum and an onset of significant energy dissipation at a time t* which appears to be independent of the viscosity v as v → 0; analytical arguments having a bearing on this behaviour, described as an ‘energy catastrophe’, are also discussed. The skewness factor (for t > t*), which increases with R, tends to 0·495 when R → ∞. When helicity is present, the existence of simultaneous energy and helicity cascades is demonstrated numerically. It is also shown that the helicity cascade inhibits the energy transfer towards large wavenumbers, in agreement with preliminary low Reynolds number results of Herring and with the conclusion of Kraichnan (1973) based on analysis of the interaction between two helicity waves. This inhibition implies a delay of the onset of energy dissipation at zero viscosity. It is shown that, whatever the relative rate of helicity and energy injection, a regime is attained at large wavenumbers k where the relative helicity tends to zero (with increasing k) and helicity is carried along locally and linearly by the energy cascade like a passive scalar. In practice, the linear regime is attained when the relative helicity is less than about 10%. The Kolmogorov constants of energy and helicity in the inertial range are determined. The impossibility of pure helicity cascades of a type conjectured by Brissaud et al. (1973a) is demonstrated. Finally it is shown that, because of dissipation and non-positive-definiteness of the helicity spectrum, non-zero total helicity may appear in the decay of unforced turbulence with zero total initial helicity, if the helicity spectrum is not initially identically zero.

Journal ArticleDOI
TL;DR: In this article, the phase-locked interactions between three obliquely oriented solitary waves are studied and it is shown that such interactions are associated with the parametric end points of the singular regime for interactions between two solitary waves.
Abstract: Resonant (phase-locked) interactions among three obliquely oriented solitary waves are studied. It is shown that such interactions are associated with the parametric end points of the singular regime for interactions between two solitary waves. The latter include regular reflexion at a rigid wall, which is impossible for ϕi < (3α)½ (ϕ = angle of incidence, α = amplitude/depth [Lt ] 1), and it is shown that the observed phenomenon of ‘Mach reflexion’ can be described as a resonant interaction in this regime. The run-up at the wall is calculated as a function of ϕi/(3α)½ and is found to have a maximum value of 4αd for ϕi = (3α)½. This same resonant interaction also describes diffraction of a solitary wave at a corner of internal angle π − ψi, −(3α)½, and suggests that a solitary wave cannot turn through an angle in excess of (3α)½ at a convex corner without separating or otherwise losing its identity.

Journal ArticleDOI
TL;DR: In this article, it was shown that these interactions are phase-conserving (the sum of the phases of incoming waves is equal to the sum of phases of the outgoing waves).
Abstract: Nonlinear oblique interactions between two slightly dispersive gravity waves (in particular, solitary waves) of dimensionless amplitudes α1 and α2 (relative to depth) and relative inclination 2ϕ (between wave normals) are classified as weak if sin2ϕ α1,2 or strong if ϕ2 = O(α1,2). Weak interactions permit superposition of the individual solutions of the Korteweg-de Vries equation in first approximation; the interaction term, which is O(α1α2), then is determined from these basic solutions.Strong interactions are intrinsically nonlinear. It is shown that these interactions are phase-conserving (the sum of the phases of the incoming waves is equal to the sum of the phases of the outgoing waves) if |α2-α1 > (2ϕ)2 but not if |α2-α1| (2ϕ)2 (e.g. the reflexion problem, for which the interacting waves are images and α2 = α1). It also is shown that the interactions are singular, in the sense that regular incoming waves with sech2 profiles yield singular outgoing waves with - csch2 profiles, if \[ \psi_{-}< |\psi| < \psi_{+},\quad{\rm where}\quad\psi_{\pm}={\textstyle\frac{1}{2}}\left|(3\alpha_2)^{\frac{1}{2}}\pm(3\alpha_1)^{\frac{1}{2}}\right|. \]Regular interactions appear to be impossible within this singular regime, and its end points, |ϕ| = ϕ±, are associated with resonant interactions.

Journal ArticleDOI
TL;DR: In this article, a solution to the dispersion of small particles suspended in a turbulent fluid is presented, based on the approximation proposed by Phythian for the dispersal of fluid points in an incompressible random fluid.
Abstract: A solution to the dispersion of small particles suspended in a turbulent fluid is presented, based on the approximation proposed by Phythian for the dispersion of fluid points in an incompressible random fluid. Motion is considered in a frame moving with the mean velocity of the fluid, the forces acting on the particle being taken as gravity and a fluid drag assumed linear in the particle velocity relative to that of the fluid. The probability distribution of the fluid velocity field in this frame is taken as Gaussian, homogeneous, isotropic, stationary and of zero mean. It is shown that, in the absence of gravity, the long-time particle diffusion coefficient is in general greater than that of the fluid, approaching with increasing particle relaxation time a value consistent with the particle being in an Eulerian frame of reference. The effect of gravity is consistent with Yudine's effect of crossing trajectories, reducing unequally the particle diffusion in directions normal to and parallel to the direction of the gravitational field. To characterize the effect of flow and gravity on particle diffusion it has been found useful to use a Froude number defined in terms of the turbulent intensity rather than the mean velocity. Depending upon the value of this number, it is found that the particle integral time scale may initially decrease with increasing particle relaxation time though it eventually rises and approaches the particle relaxation time. It is finally shown how this analysis may be extended to include the extra forces generated by the fluid and particle accelerations.

Journal ArticleDOI
TL;DR: In the mixing of a jet with a cross-stream, it is found that in the near field, defined as the region of the flow from the jet exit to a distance of a few diameters downstream of this exit, a considerable amount of dynamical adjustment takes place as discussed by the authors.
Abstract: In the mixing of a jet with a cross-stream, it is found that in the near field, defined as the region of the flow from the jet exit to a distance of a few diameters downstream of this exit, a considerable amount of dynamical adjustment takes place. This near-field region characterizes the subsequent behaviour and development of the jet, its wake and the cross-stream in the vicinity of this mixing region. The rapid evolution of the flow gives rise to a pair of bound vortices attached to the lee side of the jet boundary, to fast development of the turbulent and mean vorticity, to a vortex-shedding system, and to the largest rates of entrainment of cross-stream flow into the jet. Furthermore, it is found that the geometrical configuration of the boundaries at the jet exit plays an important role in the mixing and development processes.An intrinsic method is proposed for the delineation of the flow boundaries between the jet and the cross-stream. Calculations of mass, momentum and vorticity fluxes have been made. The vorticity flux gives evidence of the rapid stretching and tilting of the vorticity vector field in the near-field region.

Journal ArticleDOI
TL;DR: In this paper, the authors used laser-Doppler anemometry to quantify the velocity field of water in a 90° bend of 40 x 40mm cross-section; the bend had a mean radius of 92mm and was located downstream of a 1[sdot ]8m and upstream of a 2m straight section.
Abstract: Calculated values of the three velocity components and measured values of the longitudinal component are reported for the flow of water in a 90° bend of 40 x 40mm cross-section; the bend had a mean radius of 92mm and was located downstream of a 1[sdot ]8m and upstream of a 1[sdot ]2m straight section. The experiments were carried out at a Reynolds number, based on the hydraulic diameter and bulk velocity, of 790 (corresponding to a Dean number of 368). Flow visualization was used to identify qualitatively the characteristics of the flow and laser-Doppler anemometry to quantify the velocity field. The results confirm and quantify that the location of maximum velocity moves from the centre of the duct towards the outer wall and, in the 90° plane, is located around 85% of the duct width from the inner wall. Secondary velocities up to 65% of the bulk longitudinal velocity were calculated and small regions of recirculation, close to the outer corners of the duct and in the upstream region, were also observed.The calculated results were obtained by solving the Navier–Stokes equations in cylindrical co-ordinates. They are shown to exhibit the same trends as the experiments and to be in reasonable quantitative agreement even though the number of node points used to discretize the flow for the finite-difference solution of the differential equations was limited by available computer time and storage. The region of recirculation observed experimentally is confirmed by the calculations. The magnitude of the various terms in the equations is examined to determine the extent to which the details of the flow can be represented by reduced forms of the Navier–Stokes equations. The implications of the use of so-called ‘partially parabolic’ equations and of potential- and rotational-flow analysis of an ideal fluid are quantified.

Journal ArticleDOI
TL;DR: In this article, the boundary value problem for irrotational surface waves is derived from a variational integral I with the Lagrangian density [Lscr ] = Ξ ηt - [Hscr ], where Ξ (X, t) is the value of the velocity potential at the free surface, y = η(x, t), and Hscr is the energy density in x space.
Abstract: The boundary-value problem for irrotational surface waves is derived from a variational integral I with the Lagrangian density [Lscr ] = Ξ ηt - [Hscr ] where Ξ (X, t) is the value of the velocity potential at the free surface, y = η(x, t), and [Hscr ] is the energy density in x space. [Hscr ] then is expressed as a functional of Ξ and η, qua canonical variables, by solving a reduced boundary-value problem for the potential, after which the requirement that I be stationary with respect to independent variations of Ξ and η yields a pair of evolution equations for Ξ and η. The Fourier expansions Ξ = pn(t)ϕn*(x) and η = qn(t)ϕn(x), where {ϕn} is an orthogonal set of basis functions, reduce I to Hamilton's action integral, in which the complex amplitudes pn and qn appear as canonically conjugate co-ordinates, and yield canonical equations for pn and qn that are the spectral transforms of the evolution equations for Ξ and η. The evolution equations are reduced (asymptotically) to partial differential equations for pn and qn by expanding [Hscr ] in powers of α = a/d and β = (d/l)2, where a and l are scales of amplitude and wavelength. Explicit third approximations are developed for β = O(α).

Journal ArticleDOI
Chun Huh1, S. G. Mason1
TL;DR: In this paper, the steady movement of a liquid meniscus in a circular capillary tube has been examined theoretically for dynamic contact angles close to 90° with minute slippage of the liquid on the solid, thus relaxing the conventional no-slip boundary condition.
Abstract: The steady movement of a liquid meniscus in a circular capillary tube has been examined theoretically for dynamic contact angles close to 90° with minute slippage of the liquid on the solid, thus relaxing the conventional no-slip boundary condition. The resulting flow field does not produce an unbounded force at the contact line, contrary to that with the no-slip condition. The interfacial velocity, wall stress, fluid pressure and the meniscus shape are calculated, and the significance of dynamic contact-angle measurements is discussed. A modified version of the classical Washburn equation which takes account of the meniscus also reveals the importance of slippage.

Journal ArticleDOI
TL;DR: In this article, an exact solution of the Navier-Stokes equation for unsteady flow is a semi-infinite contracting or expanding circular pipe is calculated and reveals the following characteristics of this type of flow.
Abstract: Physiological pumps produce flows by alternate contraction and expansion of the vessel. When muscles start to squeeze its wall the valve at the upstream end is closed and that at the downstream end is opened, and the fluid is pumped out in the downstream direction. These systems can be modelled by a semi-infinite pipe with one end closed by a compliant membrane which prevents only axial motion of the fluid, leaving radial motion completely unrestricted. In the present paper an exact similar solution of the Navier–Stokes equation for unsteady flow is a semi-infinite contracting or expanding circular pipe is calculated and reveals the following characteristics of this type of flow. In a contracting pipe the effects of viscosity are limited to a thin boundary layer attached to the wall, which becomes thinner for higher Reynolds numbers. In an expanding pipe the flow adjacent to the wall is highly retarded and eventually reverses at Reynolds numbers above a critical value. The pressure gradient along the axis of pipe is favourable for a contracting wall, while it is adverse for an expanding wall in most cases. These solutions are valid down to the state of a completely collapsed pipe, since the nonlinearity is retained in full. The results of the present theory may be applied to the unsteady flow produced by a certain class of forced contractions and expansions of a valved vein or a thin bronchial tube.

Journal ArticleDOI
TL;DR: In this article, the authors studied the entrainment at the density interface of a stable two-layer stratified fluid, where a constant surface stress was applied at the free surface.
Abstract: Turbulent entrainment at the density interface of a stable two-layer stratified fluid is studied in the laboratory, a constant surface stress being applied at the free surface. Conservation of mass requires that the overall Richardson number Ri = Dgδρ/ρu*2 is constant in each experiment, where D is the depth of the mixed layer, gδρ/ρ the buoyancy difference and u* the friction velocity. If the entrainment rate E = ue/u* is a function only of Ri, it is therefore constant in each experiment and can be measured with a greater accuracy than has previously been attained. The functional dependence of ue/u* on Ri is established over the range 30 < Ri < 1000; it is found not to follow any simple power law. The entrainment rates are considerably higher than those measured by Kato & Phillips (1969), for which the fluid below the mixed layer was linearly stratified. Such a condition allows internal gravity waves to be radiated downwards and the reduction in entrainment rate is consistent with that found by Linden (1975).

Journal ArticleDOI
TL;DR: In this paper, high-speed photography of high Reynolds number of water jets discharging into air has been used to reveal the axisymmetric mode accompanying the transition from laminar to turbulent flow at the nozzle exit, spray formation as a culmination of the axisymmetric disturbances, and further downstream, helical disturbances which result in the entire jet assuming a helical form.
Abstract: By the use of high-speed photography, instabilities occurring in high Reynolds number water jets discharging into air have been made visible. These instabilities include the axisymmetric mode accompanying the transition from laminar to turbulent flow at the nozzle exit, spray formation as a culmination of the axisymmetric disturbances, and, further downstream, helical disturbances which result in the entire jet assuming a helical form. The final disruption of the jet is due to amplification of the helical waves. It is further shown that the amplification of the helical disturbances is due in part to aerodynamic form drag, since jets discharging into surrounding air moving at the same speed as the jet remain relatively stable, compared with the case when the jet is discharged into stagnant air.

Journal ArticleDOI
P. Vasseur1, R. G. Cox1
TL;DR: In this article, singular perturbation techniques are used to calculate the migration velocity of a spherical particle sedimenting, at low Reynolds numbers, in a stagnant viscous fluid bounded by one or two infinite vertical plane walls.
Abstract: Singular perturbation techniques are used to calculate the migration velocity of a spherical particle sedimenting, at low Reynolds numbers, in a stagnant viscous fluid bounded by one or two infinite vertical plane walls. The method is then used to study the migration of a pair of spherical particles sedimenting either in unbounded fluid or in fluid bounded by a plane vertical wall. The migration phenomenon is studied experimentally by recording the trajectory of a spherical particle settling through a viscous fluid bounded by parallel vertical plane walls. Duct- to particle-diameter ratios in the range of 27 to 48 were used with the Reynolds number based on the particle radius being between 0·03 and 0·136.In all cases the particle is observed to migrate away from the walls until it reaches an equilibrium position at the axis of the duct. The experimentally determined migration velocities agree well with those predicted by the present theory.

Journal ArticleDOI
TL;DR: In this article, the authors measured the shear-stress variation along and the velocity profiles above a solid wavy wall bounding a turbulent flow for three waves with height-to-length ratios of 2a/λ = 0·0312 and 0·05.
Abstract: Measurements of the shear-stress variation along and the velocity profiles above a solid wavy wall bounding a turbulent flow are presented for waves with height-to-length ratios of 2a/λ = 0·0312 and 0·05. These are compared with previous measurements of the wall shear stress reported by Thorsness (1975) and by Morrisroe (1970) for 2a/λ = 0·012. The investigation covered a range of conditions from those for which a linear behaviour is observed to those for which a separated flow is just being initiated.Pressure measurements indicate a linear response in that the spatial variation is described quite well by a single harmonic with a wavelength equal to that of the surface. However, the variation of τw for waves with 2a/λ = 0·0312 and 0·05 can be more rapid on the leeward side of the wave. The degree of departure from a sinusoidal variation increases with increasing wave height and fluid velocity and, from the results reported in this paper, it is suggested that nonlinear behaviour will become evident when au*/v [ges ] 27.Many aspects of the flow for all three waves are described by a solution of the linear momentum equations previously presented by Thorsness (1975) and by Thorsness & Hanratty (1977). These include the phase and amplitude of the pressure profile and the first harmonic of the shear-stress profile and the velocity field outside the viscous wall region.These results suggest that up to separation the flow is approximated quite well by linear theory. Nonlinearities affect the flow only in a region very close to the wave surface and are manifested by the appearance of higher harmonics in the variation of τw.

Journal ArticleDOI
TL;DR: In this paper, it was shown that the turbulence structure in a rough pipe appears to follow the same scaling laws as for a smooth pipe, given a sufficient length of flow development in both cases.
Abstract: Work recently reported by the authors (Perry & Abell 1975) on smooth-walled pipe flow showed support for the Townsend (1976) structural similarity principle as regards viscosity not being directly relevant in controlling the mean relative motions and the energy-containing turbulent motions. The work also supported a universal spectral behaviour in the wall region of the flow. In many hypotheses for rough-walled pipe flow, surface roughness, like viscosity, enters the problem only via external boundary conditions. Data obtained in a rough pipe are reported here and on first appearance the results seem to contradict the Townsend hypothesis and to threaten the very foundation upon which many similarity laws for rough-walled flows are based. However, on closer examination of the spectrum scaling of smooth-walled pipe flow the low and high wavenumber energy not necessarily associated with the universal similarity range can be accounted for. The broad-band longitudinal turbulence results for a rough-walled pipe can then be predicted from the smooth-wall scaling. The conclusion is that, despite the apparent anomalies, the turbulence structure in a rough pipe appears to follow the same scaling laws as for a smooth pipe, given a sufficient length of flow development in both cases. The deduced functional forms are consistent with Townsend's (1976) attached-eddy hypothesis.

Journal ArticleDOI
TL;DR: In this paper, the authors considered the problem of controlling a homogeneous inviscid fluid down a rotating channel of slowly varying crosssection, with particular reference to conditions under which the flow is hydraulically controlled.
Abstract: Flow of a homogeneous inviscid fluid down a rotating channel of slowly varying crosssection is considered, with particular reference to conditions under which the flow is ‘hydraulically controlled’. This problem is a member of a general class of problems of which gas flow through a nozzle and flow over a broad-crested weir are examples (Binnie 1949). A general discussion of such problems gives the means for determining the position of the control section (which is generally flow dependent) and shows that at this position there always exist long-wave disturbances with zero phase speed (i.e. disturbances are always ‘critical’ at the control section). The general theory is applied to the rotating-channel problem for the case of uniform potential vorticity. For this problem, three parameters are needed to specify the upstream flow, and the control theory gives a relationship between these parameters which depends on the geometry of the channel.