scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Industrial Microbiology & Biotechnology in 1995"


Journal ArticleDOI
TL;DR: This review concentrates on bacterial efflux systems for inorganic metal cations and anions, which have generally been found as resistance systems from bacteria isolated from metal-polluted environments.
Abstract: Studying metal ion resistance gives us important insights into environmental processes and provides an understanding of basic living processes. This review concentrates on bacterial efflux systems for inorganic metal cations and anions, which have generally been found as resistance systems from bacteria isolated from metal-polluted environments. The protein products of the genes involved are sometimes prototypes of new families of proteins or of important new branches of known families. Sometimes, a group of related proteins (and presumedly the underlying physiological function) has still to be defined. For example, the efflux of the inorganic metal anion arsenite is mediated by a membrane protein which functions alone in Gram-positive bacteria, but which requires an additional ATPase subunit in some Gram-negative bacteria. Resistance to Cd2+ and Zn2+ in Gram-positive bacteria is the result of a P-type efflux ATPase which is related to the copper transport P-type ATPases of bacteria and humans (defective in the human hereditary diseases Menkes' syndrome and Wilson's disease). In contrast, resistance to Zn2+, Ni2+, Co2+ and Cd2+ in Gram-negative bacteria is based on the action of proton-cation antiporters, members of a newly-recognized protein family that has been implicated in diverse functions such as metal resistance/nodulation of legumes/cell division (therefore, the family is called RND). Another new protein family, named CDF for 'cation diffusion facilitator' has as prototype the protein CzcD, which is a regulatory component of a cobalt-zinc-cadmium resistance determinant in the Gram-negative bacterium Alcaligenes eutrophus. A family for the ChrA chromate resistance system in Gram-negative bacteria has still to be defined.

531 citations


Journal ArticleDOI
TL;DR: It is concluded that prevention of adverse effects on soil microbial processes and ultimately soil fertility, should be a factor which influences soil protection legislation.
Abstract: This paper reviews the evidence for impacts of metals on the growth of selected plants and on the effects of metals on soil microbial activity and soil fertility in the long-term. Less is known about adverse long-term effects of metals on soil microorganisms than on crop yields and metal uptake. This is not surprising, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. Controlled field experiments with sewage sludges exist in the UK, Sweden, Germany and the USA and the data presented here are from these long-term field experiments only. Microbial activity and populations of cyanobacteria,Rhizobium leguminosarum bv.trifolii, mycorrhizae and the total microbial biomass have been adversely affected by metal concentrations which, in some cases, are below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N2-fixation by free living heterotrophic bacteria was found to be inhibited at soil metal concentrations of (mg kg−1): 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. N2-fixation by free-living cyanobacteria was reduced by 50% at metal concentrations of (mg kg−1): 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb.Rhizobium leguminosarum bv.trifolii numbers decreased by several orders of magnitude at soil metal concentrations of (mg kg−1): 130–200 Zn, 27–48 Cu, 11–15 Ni, and 0.8–1.0 Cd. Soil texture and pH were found to influence the concentrations at which toxicity occurred to both microorganisms and plants. Higher pH, and increased contents of clay and organic carbon reduced metal toxicity considerably. The evidence suggests that adverse effects on soil microbial parameters were generally found at surpringly modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes and ultimately soil fertility, should be a factor which influences soil protection legislation.

449 citations


Journal ArticleDOI
TL;DR: The common features of microbial biofilms that the authors should bear in mind as they use this simple universal concept to seek to understand bacterial behavior in literally hundreds of aquatic ecosystems traditionally studied by dozens of subspecies of microbiologists reared in sharply different scientific and academic conventions are stressed.
Abstract: As the success of this two-issue special section of the Journal of Industrial Microbiology attests, the study of microbial biofilms is truly burgeoning as the uniqueness and the importance of this mode of growth is increasingly recognized. Because of its universality the biofilm concept impacts virtually all of the subdivisions of Microbiology (including Medical, Dental, Agricultural, Industrial and Environmental) and these two issues incorporate contributions from authors in all of these disciplines. Some time ago we reasoned that bacteria cannot possibly be aware (sic) of their precise location, in terms of this spectrum of anthrocentric subspecialties, and that their behavior must be dictated by a standard set of phenotypic responses to environmental conditions in what must seem to them (sic) to be a continuum of very similar aquatic ecosystems. In this overview I will, therefore, stress the common features of microbial biofilms that we should bear in mind as we use this simple universal concept to seek to understand bacterial behavior in literally hundreds of aquatic ecosystems traditionally studied by dozens of subspecies of microbiologists reared in sharply different scientific and academic conventions.

447 citations


Journal ArticleDOI
TL;DR: Dental plaque develops naturally, but it is also associated with two of the most prevalent diseases affecting industrialised societies (caries and periodontal diseases).
Abstract: Dental plaque is the diverse microbial community found on the tooth surface embedded in a matrix of polymers of bacterial and salivary origin. Once a tooth surface is cleaned, a conditioning film of proteins and glycoproteins is adsorbed rapidly to the tooth surface. Plaque formation involves the interaction between early bacterial colonisers and this film (the acquired enamel pellicle). To facilitate colonisation of the tooth surface, some receptors on salivary molecules are only exposed to bacteria once the molecule is adsorbed to a surface. Subsequently, secondary colonisers adhere to the already attached early colonisers (co-aggregation) through specific molecular interactions. These can involve protein-protein or carbohydrate-protein (lectin) interactions, and this process contributes to determining the pattern of bacterial succession. As the biofilm develops, gradients in biologically significant factors develop, and these permit the co-existence of species that would be incompatible with each other in a homogeneous environment. Dental plaque develops naturally, but it is also associated with two of the most prevalent diseases affecting industrialised societies (caries and periodontal diseases). Future strategies to control dental plaque will be targeted to interfering with the formation, structure and pattern of development of this biofilm.

400 citations


Journal ArticleDOI
TL;DR: Dissimilatory metal reduction has the potential to be a helpful mechanism for both intrinsic and engineered bioremediation of contaminated environments.
Abstract: Dissimilatory metal reduction has the potential to be a helpful mechanism for both intrinsic and engineered bioremediation of contaminated environments. Dissimilatory Fe(III) reduction is an important intrinsic process for removing organic contaminants from aquifers contaminated with petroleum or landfill leachate. Stimulation of microbial Fe(III) reduction can enhance the degradation of organic contaminants in ground water. Dissimilatory reduction of uranium, selenium, chromium, technetium, and possibly other metals, can convert soluble metal species to insoluble forms that can readily be removed from contaminated waters or waste streams. Reduction of mercury can volatilize mercury from waters and soils. Despite its potential, there has as yet been limited applied research into the use of dissimilatory metal reduction as a bioremediation tool.

333 citations


Journal ArticleDOI
TL;DR: In this review, the fascinating array of microbial and enzymatic transformations of ferulic acid is examined, including cinnamoyl side-chain cleavage; nonoxidative decarboxylation; mechanistic details of styrene formation; and reduction reactions.
Abstract: In this review we examine the fascinating array of microbial and enzymatic transformations of ferulic acid. Ferulic acid is an extremely abundant, preformed phenolic aromatic chemical found widely in nature. Ferulic acid is viewed as a commodity scale, renewable chemical feedstock for biocatalytic conversion to other useful aromatic chemicals. Most attention is focused on bioconversions of ferulic acid itself. Topics covered include cinnamoyl side-chain cleavage; nonoxidative decarboxylation; mechanistic details of styrene formation; purification and characterization of ferulic acid decarboxylase; conversion of ferulic acid to vanillin; O-demethylation; and reduction reactions. Biotransformations of vinylguaiacol are discussed, and selected biotransformations of vanillic acid including oxidative and nonoxidative decarboxylation are surveyed. Finally, enzymatic oxidative dimerization and polymerization reactions are reviewed.

315 citations


Journal ArticleDOI
TL;DR: Both alginate biosynthetic and degradative enzymes are important for the development, maintenance and spread of P. aeruginosa biofilms.
Abstract: Pseudomonas aeruginosa synthesizes an exopolysaccharide called alginate in response to environmental conditions. Alginate serves to protect the bacteria from adversity in its surroundings and also enhances adhesion to solid surfaces. Transcription of the alginate biosynthetic genes is induced upon attachment to the substratum and this leads to increased alginate production. As a result, biofilms develop which are advantageous to the survival and growth of the bacteria. In certain circimstances,P. aeruginosa produces an alginate lyase enzyme which cleaves the polymer into short oligosaccharides. This negates the anchoring properties of the alginate and results in increased detachment of the bacteria away from the surface, allowing them to spread and colonize new sites. Thus, both alginate biosynthetic and degradative enzymes are important for the development, maintenance and spread ofP. aeruginosa biofilms.

254 citations


Journal ArticleDOI
TL;DR: Cr(VI)-reducing bacteria are widespread and Cr(VI) reduction occurs under both aerobic and anaerobic conditions, and electron transport systems containing cytochromes appear to be involved in Cr( VI) reduction.
Abstract: Cr(VI)-reducing bacteria are widespread and Cr(VI) reduction occurs under both aerobic and anaerobic conditions. Under aerobic conditions, both NADH and endogenous cell reserves may serve as the electron donor for Cr(VI) reduction. Under anaerobic conditions, electron transport systems containing cytochromes appear to be involved in Cr(VI) reduction. High cell densities are necessary to obtain a significant rate of Cr(VI) reduction. Cr(VI) reduction by bacteria may be inhibited by Cr(VI), oxygen, heavy metals, and phenolic compounds. The optimum pH and temperature observed for Cr(VI) reduction generally coincide with the optimal growth conditions of cells. The optimum redox potential for Cr(VI) reduction has not yet been established.

240 citations


Journal ArticleDOI
TL;DR: Bacterial species have genetically-determined systems for resistances to toxic heavy metals, and those for metals of environmental concern including mercury cadmium, arsenic and others are briefly summarized.
Abstract: Bacterial species have genetically-determined systems for resistances to toxic heavy metals. Those for metals of environmental concern including mercury cadmium, arsenic and others are briefly summarized, considering the genes of the systems and the biochemical mechanisms by which the resistance proteins function.

198 citations


Journal ArticleDOI
TL;DR: The characteristics of biofilm growth (cell positions that are relatively stable and local areas of hindered diffusion) suggest that interspecies interactions may be more significant in biofilms.
Abstract: Interactions among bacterial populations can have a profound influence on the structure and physiology of microbial communities. Interspecies microbial interactions begin to influence a biofilm during the initial stages of formation, bacterial attachment and surface colonization, and continue to influence the structure and physiology of the biofilm as it develops. Although the majority of research on bacterial interactions has utilized planktonic communities, the characteristics of biofilm growth (cell positions that are relatively stable and local areas of hindered diffusion) suggest that interspecies interactions may be more significant in biofilms.

174 citations


Journal ArticleDOI
TL;DR: Evidence is presented here that both supragingival and subgingival plaque have active oxygen metabolism and that plaque bacteria, including anaerobes, have developed defenses against oxidative stress.
Abstract: Dental plaque is a natural biofilm which has been a focus of attention for many years because of its known roles in caries and periodontal diseases. Acid production by plaque bacteria leads to the erosion of tooth mineral in caries, and the cariogenicity of plaque is related to population levels of acid-tolerant organisms such as mutans streptococci. However, the biofilm character of plaque allows for survival of a diverse flora, including less acid-tolerant organisms, some of which can produce ammonia from arginine or urea to counter acidification. Plaque is often considered to be relatively anaerobic. However, evidence is presented here that both supragingival and subgingival plaque have active oxygen metabolism and that plaque bacteria, including anaerobes, have developed defenses against oxidative stress. Even in subgingival plaque associated with periodontitis, measured residual oxygen levels are sufficient to allow for oxygen metabolism by organisms considered to be extremely anaerobic such as Treponema denticola, which metabolizes oxygen by means of NADH oxidases and produces the protective enzymes superoxide dismutase and NADH peroxidase. The finding that plaque bacteria produce a variety of protective enzymes is a good indicator that oxidative stress is a part of their everyday life. The biofilm character of plaque allows for population diversity and coexistence of aerobes, anaerobes and microaerophiles. Overall, agents that affect oxidative metabolism offer possibilities for reducing the pathogenic activities of plaque.

Journal ArticleDOI
TL;DR: In this paper, a process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils.
Abstract: A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

Journal ArticleDOI
TL;DR: The diagnosis and management of biofilm-associated infections remain difficult but critical issues and Appropriate antimicrobial therapy is often not effective in eradicating these infections and the removal of the device becomes necessary.
Abstract: The use of various medical devices including indwelling vascular catheters, cardiac pacemakers, prosthetic heart valves, chronic ambulatory peritoneal dialysis catheters and prosthetic joints has greatly facilitated the management of serious medical and surgical illness. However, the successful development of synthetic materials and introduction of these artificial devices into various body systems has been accompanied by the ability of microorganisms to adhere to these devices in the environment of biofilms that protect them from the activity of antimicrobial agents and from host defense mechanisms. A number of host, biomaterial and microbial factors are unique to the initiation, persistence and treatment failures of device-related infections. Intravascular catheters are the most common devices used in clinical practice and interactions associated with these devices are the leading cause of nosocomial bacteremias. The infections associated with these devices include insertion site infection, septic thrombophlebitis, septicemia, endocarditis and metastatic abscesses. Other important device-related infections include infections of vascular prostheses, intracardiac prostheses, total artificial hearts, indwelling urinary catheters, orthopedic prostheses, endotracheal tubes and extended wear lenses. The diagnosis and management of biofilm-associated infections remain difficult but critical issues. Appropriate antimicrobial therapy is often not effective in eradicating these infections and the removal of the device becomes necessary. Several improved diagnostic and therapeutic modalities have been reported in recent experimental studies. The clinical usefulness of these strategies remains to be determined.

Journal ArticleDOI
TL;DR: To understand better the diverse responses of bacteria to metal ion challenge, a qualitative model for the selection of metal resistance in bacteria is constructed and allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations.
Abstract: Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposonencoded, and one or more genes may be involved; at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach.

Journal ArticleDOI
TL;DR: The plasmid-borneczc operon ensures for resistance to Cd2+, Zn2+ and Co2+ ions through a tricomponent export pathway and is associated to various conjugative plasmids of A. eutrophus strains isolated from metal-contaminated industrial areas.
Abstract: The plasmid-borneczc operon ensures for resistance to Cd2+, Zn2+ and Co2+ ions through a tricomponent export pathway and is associated to various conjugative plasmids ofA eutrophus strains isolated from metal-contaminated industrial areas Theczc region of pMOL30 was reassessed especially for the segments located upstream and downstream the structural genesczc CBA In cultures grown with high concentrations of heavy metals,czc-mediated efflux of cations is followed by a process of metal bioprecipitation These observations led to the development of bioreactors designed for the removal of heavy metals from polluted effluents

Journal ArticleDOI
TL;DR: The high level of total selenate and selenite reduced indicated the suitability of D. desulfuricans for selenium detoxification.
Abstract: Desulfovibrio desulfuricans (DSM 1924) can be adapted to grow in the presence of 10 mM selenate or 0.1 mM selenite. This growth occurred in media containing formate as the electron donor and either fumarate or sulfate as the electron acceptor. As determined by electron microscopy with energy-dispersive X-ray analysis, selenate and selenite were reduced to elemental selenium which accumulated inside the cells. Selenium granules resulting from selenite metabolism were cytoplasmic while granules of selenium resulting from selenate reduction appeared to be in the periplasmic region. The accumulation of red elemental selenium in the media following stationary phase resulted from cell lysis with the liberation of selenium granules. Growth did not occur with either selenate or selenite as the electron acceptor and13C nuclear magnetic resonance indicated that neither selenium oxyanion interfered with fumarate respiration. At 1 μM selenate and 100 μM selenite, reduction byD. desulfuricans was 95% and 97%, respectively. The high level of total selenate and selenite reduced indicated the suitability ofD. desulfuricans for selenium detoxification.

Journal ArticleDOI
TL;DR: Archaic speculations and firmly established legends regarding the origin of the yeastSaccharomyces cerevisiae and related species are revisited in light of past and recent ecological evidence pointing to a strict association with artificial, man-made environments such as wineries and fermentation plants.
Abstract: Archaic speculations and firmly established legends regarding the origin of the yeast Saccharomyces cerevisiae and related species are revisited in light of past and recent ecological evidence pointing to a strict association with artificial, man-made environments such as wineries and fermentation plants. The nomenclature within this industrially important group is also discussed in view of the modifications imposed from application of molecular techniques to classification.

Journal ArticleDOI
TL;DR: The method for production of fermented soy sauce, and that for acid-hydrolysis of defatted soy bean proteins, is covered, and recent progress in industrialization of soy sauce manufacture is discussed.
Abstract: Soy sauce is a seasoning agent with a salty taste and a distinct aroma suggestive of meat extracts. The sauce is made by fermentation of a combination of soy beans and wheat in water and salt. This paper covers the method for production of fermented soy sauce, and that for acid-hydrolysis of defatted soy bean proteins. The microorganisms involved in soy sauce production, and biochemical and chemical changes in soy bean and wheat during fermentation influence greatly the sensory attributes and quality of soy sauce. Recent progress in industrialization of soy sauce manufacture is discussed.

Journal ArticleDOI
TL;DR: The continued release of caesium radioisotopes into the environment has led to a resurgence of interest in microbe-Cs interactions and it has been proposed that it is not the presence of Cs+ in cells that is growth inhibitory but rather the resulting loss of K+.
Abstract: The continued release of caesium radioisotopes into the environment has led to a resurgence of interest in microbe-Cs interactions. Caesium exists almost exclusively as the monovalent cation Cs+ in the natural environment. Although Cs+ is a weak Lewis acid that exhibits a low tendency to form complexes with ligands, its chemical similarity to the biologically essential alkali cation K+ facilitates high levels of metabolism-dependent intracellular accumulation. Microbial Cs+ (K+) uptake is generally mediated by monovalent cation transport systems located on the plasma membrane. These differe widely in specificity for alkali cations and consequently microorganisms display large differences in their ability to accumulate Cs+; Cs+ appears to have an equal or greater affinity than K+ for transport in certain microorganisms. Microbial Cs+ accumulation is markedly influenced by the presence of external cations, e.g. K+, Na+, NH4 + and H+, and is generally accompanied by an approximate stoichiometric exchange for intracellular K+. However, stimulation of growth of K+-starved microbial cultures by Cs+ is limited and its has been proposed that it is not the presence of Cs+ in cells that is growth inhibitory but rather the resulting loss of K+. Increased microbial tolerance to Cs+ may result from sequestration of Cs+ in vacuoles or changes in the activity and/or specificity of transport systems mediating Cs+ uptake. The precise intracellular target(s) for Cs+-induced toxicity has yet to be clearly defined, although certain internal structures, e.g. ribosomes, become unstable in the presence of Cs+ and Cs+ is known to substitute poorly for K+ in the activation of many K+-requiring enzymes.

Journal ArticleDOI
TL;DR: In this article, 10 new strains of C. butyricum were obtained from mud samples from a river, a stagnant pond, and a dry canal, and these new isolates fermented the commercial glycerol and produced 1,3-propanediol as a major fermentation product with concomitant production of acetic acids.
Abstract: Industrial glycerol obtained through the transesterification process using rapeseed oil did not support growth of several strains ofClostridium butyricum obtained from bacterial culture collections. Ten new strains ofC. butyricum were obtained from mud samples from a river, a stagnant pond, and a dry canal. These new isolates fermented the commercial glycerol and produced 1,3-propanediol as a major fermentation product with concomitant production of acetic and butyric acids. Four of the ten isolates were able to grow on industrial glycerol obtained from rapeseed oil. One strain,C. butyricum E5, was very resistant to high levels of glycerol and 1,3-propanediol. Using fed-batch fermentation, 109 g L−1 of industrial glycerol were converted into 58 g of 1,3-propanediol, 2.2 g of acetate and 6.1 g of butyrate per liter.

Journal ArticleDOI
TL;DR: It is suggested that modification of polymers and subsequent surface coupling of antimicrobials might be an effective approach for the prevention of bacterial biofilm formation.
Abstract: Bacterial biofilm formation on synthetic polymers plays an important role in industry and in modern medicine, leading, for example, to difficult-to-treat infections caused by colonized foreign bodies. Prevention of biofilm formation is a necessary step in the successful prophylaxis of such infections. One approach is to inhibit bacterial adherence by polymer surface modification. We have investigated polymer modification by glow discharge treatment in order to study the influence of the modified surface on bacterial adherence. Surface roughness, surface charge density and contact angles of the modified polymers were determined and related to the adherence of Staphylococcus epidermidis KH6. Although no influence of surface roughness and charge density on bacterial adherence was noticed, a correlation between the free enthalpy of adhesion (estimated from contact angle measurements) and adherence was observed. There seems to exist a certain minimum bacterial adherence, independent of the nature of the polymer surface. Modified polymers with negative surface charge allow for bacterial adherence close to the adherence minimum. These polymers could be improved further by the ionic bonding of silver ions to the surface. Such antimicrobial polymers are able to prevent bacterial colonization, which is a prerequisite for biofilm formation. It is suggested that modification of polymers and subsequent surface coupling of antimicrobials might be an effective approach for the prevention of bacterial biofilm formation.

Journal ArticleDOI
TL;DR: This review focuses on bacterial exopolysaccharides in free living species, emphasizing their functions in the environment and the use of antibody probes to study them.
Abstract: There has been much written on bacterial exopolysaccharides (EPS) and their role in virulence. Less has been published regarding EPS in free living species. This review focuses on that subject, emphasizing their functions in the environment and the use of antibody probes to study them.

Journal ArticleDOI
TL;DR: This article reviews literature concerning metallothioneins and their namesakes in prokaryotes to clarify the functions of these molecules.
Abstract: Metallothioneins have been extensively studied in many different eukaryotes where they sequester, and hence detoxify, excess amounts of certain metal ions. However, the precise functions of many of these molecules are not fully understood. This article reviews literature concerning their namesakes in prokaryotes.

Journal ArticleDOI
TL;DR: It appears that biofilms exist in the intestine in a manner similar to oral bacterialBiofilms, and that E. coli is part of these biofilm as both commensals and pathogens.
Abstract: While Escherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains of E. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. Enterotoxigenic E. coli (ETEC) is the most extensively studied of the five categories of E. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenic E. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three additional categories of E. coli diarrheal disease, their colonization factors and their host cell receptors, are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and that E. coli is part of these biofilms as both commensals and pathogens.

Journal ArticleDOI
TL;DR: Cell suspensions of Sacharomyces cerevisiae, Kloeckera apiculata andCandida stellata were autolyzed in phosphate buffer, pH 4.5, for up to 10 days, with retention of cell wall structure and shape during autolysis, but there was extensive intracellular disorganization within S. Cerevisiae andC.
Abstract: Cell suspensions of Sacharomyces cerevisiae, Kloeckera apiculata and Candida stellata were autolyzed in phosphate buffer, pH 4.5, for up to 10 days. Cell dry weights decreased by 25-35% after 10 days. Based on initial cell dry weight, the soluble autolysate consisted of: carbohydrate (principally polysaccharide) 3-7%; organic acids 3-6%; protein 12-13%; free amino acids 8-12%; nucleic acid products 3-5%; and lipids 1-2%. The main organic acids in autolysates were propionic, succinic and acetic and the main amino acids were phenylalanine, glutamic acid, leucine, alanine and arginine. Approximately 85-90% of cellular RNA and 25-40% of cellular DNA were degraded during autolysis. Both neutral lipid and phospholipid components were degraded, with neural lipids but not phospholipids being found in autolysates. Scanning and transmission electron micrographs showed retention of cell wall structure and shape during autolysis, but there was extensive intracellular disorganization within S. cerevisiae and C. stellata. There were differences in the autolytic behavior of K. apiculata compared with S. cerevisiae and C. stellata.

Journal ArticleDOI
TL;DR: In this paper, a review of analytical techniques that monitor biofilm processes in a continuous nondestructive manner and that could also be modified for industrial applications is presented, with the aim to stimulate development and use of biofilm monitoring techniques in industrial and environmental settings.
Abstract: A fundamental requirement for the understanding and control of biofilms is the continuous nondestructive monitoring of biofilm processes. This paper reviews research analytical techniques that monitor biofilm processes in a continuous nondestructive manner and that could also be modified for industrial applications. To be considered ‘continuous’ and ‘nondestructive’ for the purpose of this review a technique must: (a) function in an aqueous system; (b) not require sample removal; (c) minimize signal from organisms or contaminants in the bulk phase; and (d) provide real-time data. Various microscopic, spectrochemical, electrochemical, and piezoelectrical analysis methods fulfill these criteria. These techniques monitor the formation of biofilms, the physiology of the microorganisms within biofilms, and/or the interaction of the biofilms with their environment. It is hoped that this review will stimulate development and use of biofilm monitoring techniques in industrial and environmental settings.

Journal ArticleDOI
TL;DR: Biobleaching studies showed that the enzyme would brighten both hardwood and softwood kraft pulp and release chromophores at pH 7 and 9, which meant this enzyme could be used for prebleaching with minimal pH adjustment.
Abstract: ABacillus sp (V1-4) was isolated from hardwood kraft pulp. It was capable of growing in diluted kraft black liquor at pH 11.5 and produced 49 IU (μmol xylose min−1 ml−1) of xylanase when cultivated in alkaline medium at pH 9. Maximal enzyme activity was obtained by cultivation in a defined alkaline medium with 2% birchwood xylan and 1% corn steep liquor at pH 9, but high enzyme production was also obtained on wheat bran. The apparent pH optimum of the enzyme varied with the pH used for cultivation and the buffer system employed for enzyme assay. With cultivation at pH 10 and assays performed in glycine buffer, maximal activity was observed at pH 8.5; with phosphate buffer, maximal activity was between pH 6 and 7. The xylanase temperature optimum (at pH 7.0) was 55°C. In the absence of substrate, at pH 9.0, the enzyme was stable at 50°C for at least 30 min. Elecrophoretic analysis of the crude preparation showed one predominant xylanase with an alkaline pl. Biobleaching studies showed that the enzyme would brighten both hardwood and softwood kraft pulp and release chromophores at pH 7 and 9. Because kraft pulps are alkaline, this enzyme could be used for prebleaching with minimal pH adjustment.

Journal ArticleDOI
TL;DR: Fusarium sp.
Abstract: The ability of several filamentous, polymorphic and unicellular fungi to reduce selenite to elemental selenium on solid medium was examined.Fusarium sp. andTrichoderma reeii were the only filamentous fungi, of those tested, which reduced selenite to elemental selenium on Czapek-Dox agar resulting in a red colouration of colonies. Other organisms (Aspergillus niger, Coriolus versicolor, Mucor SK, andRhizopus arrhizus) were able to reduce selenite only on malt extract agar. Several fungi were able to grow in the presence of sodium selenite but were apparently unable to reduce selenite to elemental selenium, indicating that other mechanisms of selenite tolerance were employed, such as reduced uptake and/or biomethylation to less toxic, volatile derivatives. Sodium selenate was more toxic toFusarium sp. than selenite, and the toxicity of both oxyanions was increased in sulphur-free medium, with this effect being more marked for selenate. Scanning electron microscopy ofAspergillus funiculosus andFusarium sp. incubated with sodium selenite showed the presence of needle-like crystals of elemental selenium on the surfaces of hyphae and conidia, while transmission electron microscopy ofA. funiculosus revealed the deposition of electron-dense granules in vacuoles of selenite-treated fungi. Several yeasts were able to grow on MYGP agar containing sodium selenate or sodium selenite at millimolar concentrations. Sone, notablyRhodotorula rubra andCandida lipolytica, and the polymorphic fungusAureobasidium pullulans were also effective at reducing selenite to elemental selenium, resulting in red-coloured colonies.Schizosaccharomyces pombe was able to grow at selenite concentrations up to 5 mmol L−1 without any evidence of reduction, again indicating the operation of other tolerance mechanisms.

Journal ArticleDOI
TL;DR: Nickel resistance mechanisms in nickel-resistant mutants of yeasts and filamentous fungi which were obtained by exposure to a mutagen or by successive culture in media containing increasing concentrations of nickel ion are described.
Abstract: This review describes nickel toxicity and nickel resistance mechanisms in fungi. Nickel toxicity in fungi is influenced by environmental factors such as pH, temperature and the existence of organic matter and other ions. We describe resistance mechanisms in nickel-resistant mutants of yeasts and filamentous fungi which were obtained by exposure to a mutagen or by successive culture in media containing increasing concentrations of nickel ion. Nickel resistance may involve: (1) inactivation of nickel toxicity by the production of extracellular nickel-chelating substances such as glutathione; (2) reduced nickel accumulation, probably by modification of a magnesium transport system; (3) sequestration of nickel into a vacuole associated with free histidine and involving Ni-insensitivity of vacuolar membrane H(+)-ATPase.

Journal ArticleDOI
TL;DR: Results suggest that carotenogenesis developed in P. rhodozyma in response to the presence of photoactivatable antifungal compounds produced by the host tree.
Abstract: The only known habitat of the astaxanthin-containingPhaffia rhodozyma is in slime fluxes of deciduous trees at high altitudes. In this habitat, the function of carotenoids inP. rhodozyma is probably to provide protection against photogenerated antifungal substances in the tree flux such as singlet oxygen (1O2). To investigate the role of carotenoids inP. rhodozyma, genetic selections were employed to determine if carotenogenic yeast strains ofP. rhodozyma have enhanced ability to quench1O2. Singlet oxygen was generated in liquid culture by the interaction of visible light (λ-550 nm) with the photosensitizer rose bengal or by the activation of α-terthienyl with ultraviolet light (λ=366 nm). In each case the treatments selected for growth of pigmented strains ofP. rhodozyma. Albino (carotenoid-less) or yellow (β-carotene producing) strains grew less well in media containing1O2. Addition of the1O2 quencher sodium azide to the medium with α-terthienyl allowed growth of non-pigmented strains. Since the ecological niche ofP. rhodozyma is highly specific, we investigated whether extracts of birch trees (Betula), the original source ofP. rhodozyma, contained a compound that would select for pigmented populations of the yeast. WhenP. rhodozyma strains were exposed to ethyl acetate extracts ofBetula papyrifera excited with 366 nm ultraviolet light, only pigmented cells were able to grow. These results suggest that carotenogenesis developed inP. rhodozyma in response to the presence of photoactivatable antifungal compounds produced by the host tree.