scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Physical Chemistry Letters in 2022"


Journal ArticleDOI
TL;DR: In this paper , the degradation of halide perovskites upon water exposure has been intensively studied, resulting in chemical insights into key processes, including hydration, phase transformation, decomposition, and dissolution.
Abstract: Halide perovskites are considered to be next-generation semiconductor materials with bright prospects to advance the technology of photonics and optoelectronics. Because of the intrinsic ionic feature, the interactions between perovskites and water induce serious stability issues, which has been one of the fundamental problems hindering the practical application of perovskites. The degradation of halide perovskites upon water exposure has been intensively studied, resulting in chemical insights into key processes, including hydration, phase transformation, decomposition, and dissolution. In this Perspective, we try to illustrate what happens when halide perovskites meet with water. We summarize the research progress regarding the understanding of these processes and discuss the principle of strategy design toward improved stability against water. In addition to the instability-related interactions, we also discuss the aqueous solution of perovskite precursors for fabricating perovskite-based functional materials. Hopefully, this Perspective can inspire more fundamental studies on the interactions between perovskites and water, such as spectroscopy and simulation, crystal structure and material characterizations, and solution chemistry and crystallization.

44 citations


Journal ArticleDOI
TL;DR: In this article , a kind of 2D semimetal material, molybdenum carbide (Mo2C) film, is prepared via a chemical vapor deposition (CVD) method, and the origin of SERS is investigated for the first time.
Abstract: The relatively weak Raman enhanced factors of semiconductor-based substrate limit its further application in surface-enhanced Raman scattering (SERS). Here, a kind of two-dimensional (2D) semimetal material, molybdenum carbide (Mo2C) film, is prepared via a chemical vapor deposition (CVD) method, and the origin of SERS is investigated for the first time. The detection limits of the prepared Mo2C films for crystal violet (CV) and rhodamine 6G (R6G) molecules are low at 10-6 M and 10-8 M, respectively. Our detailed theoretical analysis, based on density functional theory and the finite element method, demonstrates that the enhancement of the 2D Mo2C film is indeed CM in nature rather than the EM effects. Besides, the basic doping strategies are proposed to further optimize the SERS sensitivity of Mo2C for Fermi level regulation. We believe this work will provide a helpful guide for developing a highly sensitive semimetal SERS substrate.

41 citations


Journal ArticleDOI
TL;DR: In this paper , the authors investigated the behaviors of photogenerated charge carriers within an inorganic/organic TiO2/polydopamine S-scheme heterojunction using ultrafast transient absorption spectroscopy and time-resolved photoluminescence spectrogeneration.
Abstract: Step-scheme heterojunctions formed between two firmly bound photocatalysts facilitate charge separation due to interfacial charge transfer, which is usually illustrated by the gain or loss of electrons in the constituent photocatalysts characterized by in situ irradiated X-ray photoelectron spectroscopy. This technique provides a steady-state view of charge distribution but overlooks the transient and complex dynamics of charge transfer, trapping, and recombination. To provide a molecular-level and dynamic view of these processes, we investigated the behaviors of photogenerated charge carriers within an inorganic/organic TiO2/polydopamine S-scheme heterojunction using ultrafast transient absorption spectroscopy and time-resolved photoluminescence spectroscopy. We found the interfacial charge transfer within the step-scheme heterojunction occurred at a smaller shorter time scale than recombination, leading to efficient charge separation. Moreover, the charge-discharge property of polydopamine induces electron backflow, which should be avoided in practical photocatalytic applications. The composite showed higher photocatalytic H2O2-production activities due to faster H2O2 formation and suppressed H2O2 decomposition.

40 citations


Journal ArticleDOI
TL;DR: In this article , the development process and the formation mechanism of S-scheme photocatalysts are first introduced, and the applications of XPS and ISIXPS in confirming the interfacial electron transfer in S-Scheme heterojunctions are discussed.
Abstract: S-scheme photocatalysts have demonstrated great potential in solar fuel production. To study the electron transfer pathways in S-scheme heterojunctions, in situ irradiated X-ray photoelectron spectroscopy (ISIXPS) is an effective and widely used technology. However, the mechanism of ISIXPS in identifying the electron transfer pathways in S-scheme heterojunction has not yet been elucidated. In this Perspective, the development process and the formation mechanism of S-scheme photocatalysts are first introduced. Afterward, the principles of XPS and ISIXPS measurements are thoroughly explained, and the applications of XPS and ISIXPS in confirming the interfacial electron transfer in S-scheme heterojunctions are discussed. Finally, suggestions for future research on the utilization of ISIXPS in S-scheme heterojunctions are proposed. This Perspective will provide deep insight into the electron transfer mechanism in S-scheme photocatalysts through ISIXPS.

39 citations


Journal ArticleDOI
TL;DR: In this article , a recent progress in 2D perovskite-based photodetectors is presented in detail, focusing on growth strategies for reducing thickness, thickness-dependent optical and electrical properties, device engineering, heterojunction fabrication, and device performance.
Abstract: Photodetectors are light sensors in widespread use in image sensing, optical communication, and consumer electronics. In current smart optoelectronic technology, conventional semiconductors have encountered a bottleneck caused by inflexibility and opacity. With the ever-increasing demands for versatile optoelectronic applications, perovskite-type 2D materials demonstrate great potential for advanced photodetectors inspired by molecularly thin 2D materials. Through the reduction of thickness to thin or molecularly thin levels, single-crystalline 2D perovskites can exhibit superior optoelectronic performance characteristics, such as tunable absorption property by chemical design, enhanced carrier separation by remarkable photosensing capability, and improved carrier extraction by versatile band engineering. More importantly, perovskite-type 2D materials exhibit great potential for large-scale monolithic integration to achieve all-in-one sensing-memory-computing optoelectronic devices. In this Perspective, recent progress in 2D perovskite-based photodetectors is presented in detail. The focus is on growth strategies for reducing thickness, thickness-dependent optical and electrical properties, device engineering, heterojunction fabrication, and device performance. Finally, the current challenges and future prospects in this field are presented.

36 citations


Journal ArticleDOI
TL;DR: In this article , several state-of-the-art strategies have been put forward in this perspective to modulate the critical energy gap law from the viewpoints of crystal structure design, defect engineering, strengthened rigidity, and energy transfer.
Abstract: Broadband near-infrared (NIR) light sources based on phosphor-converted light-emitting diodes (pc-LEDs) are desirable for various photonics applications, while developing thermally stable NIR phosphors remains a great challenge. Increasing the temperature accelerates the severe nonradiative relaxation process gorverned by the intrinsic energy gap law, which further suspends the efficient low-energy emission of Cr3+ emitters in the inorganic lattice. To address this rule, several state-of-the-art strategies have been put forward in this perspective to modulate the critical law from the viewpoints of (1) crystal structure design, (2) defect engineering, (3) strengthened rigidity, and (4) energy transfer. This perspective suggests avenues for exploring novel broadband NIR phosphors with high thermal stability and will also stimulate further studies on NIR spectroscopy for high-power applications.

35 citations


Journal ArticleDOI
TL;DR: In this Viewpoint, theory, properties, experimental results, and the origin of the CPE are presented and discussed.
Abstract: The constant phase element (CPE) is usually observed at solid electrodes. It is a source of controversies and misunderstandings. In this Viewpoint, theory, properties, experimental results, and the origin of the CPE are presented and discussed.

34 citations


Journal ArticleDOI
TL;DR: It is shown that the OV RBD binds to ACE2 more efficiently and tightly predominantly because of strong electrostatic interactions, thereby promoting increased infectivity and transmissibility compared to other strains.
Abstract: The emergence of new SARS-CoV-2 Omicron variant of concern (OV) has exacerbated the COVID-19 pandemic because of a large number of mutations in the spike protein, particularly in the receptor-binding domain (RBD), resulting in highly contagious and/or vaccine-resistant strains. Herein, we present a systematic analysis based on detailed molecular dynamics (MD) simulations in order to understand how the OV RBD mutations affect the ACE2 binding. We show that the OV RBD binds to ACE2 more efficiently and tightly predominantly because of strong electrostatic interactions, thereby promoting increased infectivity and transmissibility compared to other strains. Some of the OV RBD mutations are predicted to affect the antibody neutralization either through their role in the S-protein conformational changes, such as S371L, S373P, and S375F, or through changing its surface charge distribution, such as G339D, N440K, T478K, and E484A. Other mutations, such as K417N, G446S, and Y505H, decrease the ACE2 binding, whereas S447N, Q493R, G496S, Q498R, and N501Y tend to increase it.

34 citations


Journal ArticleDOI
TL;DR: An electrochemical upcycling approach to electrocatalytic oxidation of PET hydrolysate using Cu-based nanowire catalysts is reported, demonstrating that the electrocatalyst can catalyze the ethylene glycol molecule derived from PET waste toward formate with high selectivity and exhibit a lower onset potential than for water oxidation.
Abstract: Upcycling plastic waste pollution for sustainable resources and energy is an ideal solution to plastic waste-related environmental issues. Polyethylene terephthalate (PET), one of the most prominent single-use daily plastics with up to millions of tons produced annually, has recently been explored with respect to chemical recycling to ameliorate its environmental impact. In this work, we report an electrochemical upcycling approach to electrocatalytic oxidation of PET hydrolysate using Cu-based nanowire catalysts. We demonstrate that the electrocatalyst can catalyze the ethylene glycol (EG) molecule derived from PET waste toward formate with high selectivity and exhibit a lower onset potential for EG oxidation than for water oxidation. Experimental and density functional theory calculation results reveal that the oxidation pathway of EG on CuO can selectively break the C-C bond to generate formic acid. This work sheds light on employing earth-abundant metal catalysts to convert PET plastic waste to produce valued chemicals and green hydrogen.

27 citations


Journal ArticleDOI
TL;DR: In this paper , an in situ fabrication strategy for a flexible and large-area Tl-doped Cs3Cu2I5 NC-polymer composite scintillation film with a high light yield (∼48800 photons/MeV) and improved stability was developed.
Abstract: Cs3Cu2I5 nanocrystals (NCs) are considered to be promising materials due to their high photoluminescence efficiency and X-ray hardness. However, the present strategy depends on tedious fabrication with excessive chemical waste. The evasive iodide ion dissociation, inadaptable ligand system, low stability, and relatively low light yield severely impede their applications. Herein, we develop an in situ fabrication strategy for a flexible and large-area Tl-doped Cs3Cu2I5 NC-polymer composite scintillation film with a high light yield (∼48800 photons/MeV) and improved stability. Tween 80 and phosphinic acid successfully inhibit the oxidation of iodide ions, and the films can be stored for at least six months. As a result, a high spatial resolution of 16.3 lp mm-1 and a low detection limit of 305 nGyair s-1 were achieved. A radioluminescence intensity of >80% was maintained after a total irradiation dose of 604.8 Gy. These results indicate the promising application of these copper halide NCs in low-cost, flexible, and high-performance medical imaging.

26 citations


Journal ArticleDOI
TL;DR: In this paper , a many-body representation at the CCSD(T) level of theory up to the four-body interaction was proposed for water potential energy surfaces, and the new PES is benchmarked for the isomers of the water hexamer for dissociation energies, harmonic frequencies, and unrestricted diffusion Monte Carlo (DMC) calculations of the Prism, Book, and Cage isomers.
Abstract: Many model potential energy surfaces (PESs) have been reported for water; however, none are strictly from "first-principles". Here we report such a potential, based on a many-body representation at the CCSD(T) level of theory up to the four-body interaction. The new PES is benchmarked for the isomers of the water hexamer for dissociation energies, harmonic frequencies, and unrestricted diffusion Monte Carlo (DMC) calculations of the zero-point energies of the Prism, Book, and Cage isomers. Dissociation energies of several isomers of the 20-mer agree well with recent benchmark energies. Exploratory DMC calculations on this cluster verify the robustness of the new PES for quantum simulations. The accuracy and speed of the new PES are demonstrated for standard condensed phase properties, i.e., the radial distribution function and the self-diffusion constant. Quantum effects are shown to be substantial for these observables and also needed to bring theory into excellent agreement with experiment.

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the electronic and interfacial features of metal/semiconductor MoSH/MoSi2N4 van der Waals (vdW) contact.
Abstract: Following the successful synthesis of single-layer metallic Janus MoSH and semiconducting MoSi2N4, we investigate the electronic and interfacial features of metal/semiconductor MoSH/MoSi2N4 van der Waals (vdW) contact. We find that the metal/semiconductor MoSH/MoSi2N4 contact forms p-type Schottky contact (p-ShC type) with small Schottky barrier (SB), suggesting that Janus MoSH can be considered as an efficient metallic contact to MoSi2N4 semiconductor with high charge injection efficiency. The electronic structure and interfacial features of the MoSH/MoSi2N4 vdW heterostructure are tunable under strain and electric fields, which give rise to the SB change and the conversion from p-ShC to n-ShC type and from ShC to Ohmic contact. These findings could provide a new pathway for the design of optoelectronic applications based on metal/semiconductor MoSH/MoSi2N4 vdW heterostructures.

Journal ArticleDOI
TL;DR: In this paper , a photocathode Bi@ZFO NT with high utilization of visible light and sharp-tips effect is successfully prepared using a facile method for photoelectrocatalytic CO2 reduction to value-added chemicals.
Abstract: Photoelectrocatalytic (PEC) CO2 reduction to value-added chemicals is a promising solution to address the energy and environmental issues we face currently. Herein, a unique photocathode Bi@ZFO NTs (Bi and α-Fe2O3 co-modified ZnO nanorod arrays) with high utilization of visible light and sharp-tips effect are successfully prepared using a facile method. Impressively, the performance of Bi@ZFO NTs for PEC CO2 reduction to HCOOH included small onset potential (-0.53 V vs RHE), Tafel slope (101.2 mV dec-1), and a high faraday efficiency of 61.2% at -0.65 V vs RHE as well as favorable stability over 4 h in an aqueous system under visible light illumination. Also, a series of experiments were performed to investigate the origin of its high activity, indicating that the metallic Bi and α-Fe2O3/ZnO nanojunction should be responsible for the favorable CO2 adsorption/activation and charge transition/carrier separation, respectively. Density functional theory calculations reveal that the Bi@ZFO NTs could lower the intermediates' energy barrier of HCOO* and HCOOH* to form HCOOH due to the strong interaction of Bi and α-Fe2O3/ZnO.

Journal ArticleDOI
TL;DR: It is found that benzene additive with delocalized electron distribution can effectively passivate the deep FA-interstitial and Pb-interstitial defects by electron donating to the surface defect through charge-transfer.
Abstract: Formamidinium lead iodide based hybrid perovskite materials with improved efficiency and stability still lack well-understood surface defect formation mechanisms. Controlling the surface termination and defects has the potential to improve the performance of both conventional 3D and latterly reduced-dimensional perovskites photovoltaics. Here, we characterized the termination and all possible defect formations in FAPbI3 surface by the first-principles calculations. We found that, among the surfaces we considered, FAI-termination exhibits the most stable surface with a high defect tolerance. The PbI2-terminated surface is also found to be relatively stable; however, certain defects, such as electron-donating FA-interstitial and Pb-interstitial defects, can create deep-level stable charge-traps, potentially limiting the optoelectronic performance. We further investigate the surface treatment on these deep defects by model small molecule additives. We found that benzene additive with delocalized electron distribution can effectively passivate the deep FA-interstitial and Pb-interstitial defects by electron donating to the surface defect through charge-transfer.

Journal ArticleDOI
TL;DR: In this article , the authors considered the cis-trans isomerization of HONO atomistically using an ab initio potential energy surface and evaluated the transmission coefficient using the reactive flux method and identified the conditions for rate acceleration.
Abstract: The observed modification of thermal chemical rates in Fabry-Perot cavities remains a poorly understood effect theoretically. Recent breakthroughs explain some of the observations through the Grote-Hynes theory, where the cavity introduces friction with the reaction coordinate, thus reducing the transmission coefficient and the rate. The regime of rate enhancement, the observed sharp resonances at varying cavity frequencies, and the survival of these effects in the collective regime remain mostly unexplained. In this Letter, we consider the cis-trans isomerization of HONO atomistically using an ab initio potential energy surface. We evaluate the transmission coefficient using the reactive flux method and identify the conditions for rate acceleration. In the underdamped, low-friction regime of the reaction coordinate, the cavity coupling enhances the rate with increasing coupling strength until reaching the Kramers turnover point. Sharp resonances in this regime are related to cavity-enabled energy redistribution channels.

Journal ArticleDOI
TL;DR: In this article , the Bader-charge descriptor reveals that the charge transfers from substrate to *NNH in the first protonation step and from *NH3 to substrate in the last proptonation step, circumventing a big hurdle in NRR by achieving negative free energy change of *NH 2 to *NH 3.
Abstract: To tune single-atom catalysts (SACs) for effective nitrogen reduction reaction (NRR), we investigate various transition metals implanted on boron-arsenide (BAs), boron-phosphide (BP), and boron-antimony (BSb) using density functional theory (DFT). Interestingly, W-BAs shows high catalytic activity and excellent selectivity with an insignificant barrier of only 0.05 eV along the distal pathway and a surmountable kinetic barrier of 0.34 eV. The W-BSb and Mo-BSb exhibit high performances with limiting potentials of -0.19 and -0.34 V. The Bader-charge descriptor reveals that the charge transfers from substrate to *NNH in the first protonation step and from *NH3 to substrate in the last protonation step, circumventing a big hurdle in NRR by achieving negative free energy change of *NH2 to *NH3. Furthermore, machine learning (ML) descriptors are introduced to reduce computational cost. Our rational design meets the three critical prerequisites of chemisorbing N2 molecules, stabilizing *NNH, and destabilizing *NH2 adsorbates for high-efficiency NRR.

Journal ArticleDOI
TL;DR: In this article , side-chain modulation of conjugated polymers and evaluating their effects on the performance of organic field effect transistors (OFETs) is discussed. And the challenges and potential applications of functional high-performance OFETs through side chain engineering are also discussed.
Abstract: Past decades have witnessed the rapid development of conjugated polymers because of their promising semiconducting properties and applications in organic field-effect transistors (OFETs). Recent studies have shown that side-chain engineering of conjugated polymers is an efficient strategy to increase semiconducting performance. This Perspective focuses on the side-chain modulation of conjugated polymers and evaluating their effects on the performance of OFETs. The challenges and potential applications of functional high-performance OFETs through side-chain engineering are also discussed.

Journal ArticleDOI
TL;DR: In this article , the authors implemented the calculation of enthalpies of formation with a general-purpose ANI-1ccx neural network atomistic potential, and demonstrated on a wide range of benchmark sets that both ANI and AIQM1 approach the coveted chemical accuracy of 1 kcal/mol with the speed of semi-empirical quantum mechanical methods.
Abstract: Enthalpies of formation and reaction are important thermodynamic properties that have a crucial impact on the outcome of chemical transformations. Here we implement the calculation of enthalpies of formation with a general-purpose ANI-1ccx neural network atomistic potential. We demonstrate on a wide range of benchmark sets that both ANI-1ccx and our other general-purpose data-driven method AIQM1 approach the coveted chemical accuracy of 1 kcal/mol with the speed of semiempirical quantum mechanical methods (AIQM1) or faster (ANI-1ccx). It is remarkably achieved without specifically training the machine learning parts of ANI-1ccx or AIQM1 on formation enthalpies. Importantly, we show that these data-driven methods provide statistical means for uncertainty quantification of their predictions, which we use to detect and eliminate outliers and revise reference experimental data. Uncertainty quantification may also help in the systematic improvement of such data-driven methods.

Journal ArticleDOI
TL;DR: In this paper , the authors explore how the dynamics of unimolecular dissociation reactions that are rate-limited by intramolecular vibrational energy redistribution (IVR) can be modified inside an infrared optical cavity.
Abstract: While the emerging field of vibrational polariton chemistry has the potential to overcome traditional limitations of synthetic chemistry, the underlying mechanism is not yet well understood. Here, we explore how the dynamics of unimolecular dissociation reactions that are rate-limited by intramolecular vibrational energy redistribution (IVR) can be modified inside an infrared optical cavity. We study a classical model of a bent triatomic molecule, where the two outer atoms are bound by anharmonic Morse potentials to the center atom coupled to a harmonic bending mode. We show that an optical cavity resonantly coupled to particular anharmonic vibrational modes can interfere with IVR and alter unimolecular dissociation reaction rates when the cavity mode acts as a reservoir for vibrational energy. These results lay the foundation for further theoretical work toward understanding the intriguing experimental results of vibrational polaritonic chemistry within the context of IVR.

Journal ArticleDOI
TL;DR: In this article , the performance of transition metal (TM) anchored g-C3N4 (TM/g-C 3N4) was systematically evaluated using density functional theory and ab initio molecular dynamics.
Abstract: Converting nitrates into industrial-value chemicals is of great significance for environmental sustainability. Herein, the electrochemical nitrate reduction reaction (NO3RR) performances of transition metal (TM) anchored g-C3N4 (TM/g-C3N4) were systematically evaluated using density functional theory and ab initio molecular dynamics. A novel equilibrium adsorption model was constructed to screen the excellent catalysts, accelerating high-throughput calculations. As found, Hf/g-C3N4 exhibits remarkable activity with a limiting potential of 0.11 V. Besides, the superior electrode selectivity overwhelmingly depresses the formation of byproducts and greatly speeds up the NO3RR. The electronic structure analysis discloses the origin of the electrocatalytic activity for TM/g-C3N4 and indicates why the IVB group elements have an outstanding role. Finally, the formation energy of the clusters and ab initio molecular dynamics simulations prove their structure has fine stability. This work not only offers high-performance electrode candidates for the NO3RR but also opens up a precedent of electrocatalysis in the field of wastewater treatment of explosives.

Journal ArticleDOI
TL;DR: The recent applications of ML in electrocatalysis, including the screening of electrocatalysts and simulation of Electrocatalytic processes are summarized, and interpretable machine learning methods for electrocatalyst methods are discussed to accelerate knowledge generation.
Abstract: Designing and screening novel electrocatalysts, understanding electrocatalytic mechanisms at an atomic level, and uncovering scientific insights lie at the center of the development of electrocatalysis. Despite certain success in experiments and computations, it is still difficult to achieve the above objectives due to the complexity of electrocatalytic systems and the vastness of the chemical space for candidate electrocatalysts. With the advantage of machine learning (ML) and increasing interest in electrocatalysis for energy conversion and storage, data-driven scientific research motivated by artificial intelligence (AI) has provided new opportunities to discover promising electrocatalysts, investigate dynamic reaction processes, and extract knowledge from huge data. In this Perspective, we summarize the recent applications of ML in electrocatalysis, including the screening of electrocatalysts and simulation of electrocatalytic processes. Furthermore, interpretable machine learning methods for electrocatalysis are discussed to accelerate knowledge generation. Finally, the blueprint of machine learning is envisaged for future development of electrocatalysis.

Journal ArticleDOI
TL;DR: In this paper , the role of ions in i-TE hydrogels employing a poly(vinyl alcohol) (PVA) polymer matrix and a number of ion providers was highlighted, indicating the ability to influence the hydrogen bond by the ion is a crucial factor.
Abstract: Ionic thermoelectric (i-TE) material with mobile ions as charge carriers has the potential to generate large thermal voltages at low operating temperatures. This study highlights the role of ions in i-TE hydrogels employing a poly(vinyl alcohol) (PVA) polymer matrix and a number of ion providers, e.g., KOH, KNO3, KCl, KBr, NaI, KI, and CsI. The relationship between the intrinsic physical parameters of the ion and the thermoelectric performance is established, indicating the ability to influence the hydrogen bond by the ion is a crucial factor. Among these i-TE hydrogels, the PVA/CsI hydrogel exhibits the largest ionic Seebeck coefficient, reaching 52.9 mV K-1, which is the largest of all i-TE materials reported to date. In addition, our work demonstrates the influence of ions on polymer configuration and provides an avenue for ion selection in the Soret effect in ionic thermoelectrics.

Journal ArticleDOI
TL;DR: The Urbach energy as discussed by the authors is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques, and it can capture the optoelectronic performance potential of a single number.
Abstract: The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material's minimal open-circuit-voltage deficit. Performance calculations considering the Urbach energy give more realistic power conversion efficiency limits than from classical Shockley-Queisser considerations. The Urbach energy is often also found to correlate well with the Stokes shift and (inversely) with the carrier mobility of a semiconductor. Here, we discuss key features, underlying physics, measurement techniques, and implications for device fabrication, underlining the utility of this metric.

Journal ArticleDOI
TL;DR: In this paper , the authors explore the dynamical behavior of a halide perovskite memristor model to evaluate the response to a step perturbation and the self-sustained oscillations that produce analog neuron spiking.
Abstract: Memristors are candidate devices for constructing artificial neurons, synapses, and computational networks for brainlike information processing and sensory-motor autonomous systems. However, the dynamics of natural neurons and synapses are challenging and cannot be well reproduced with standard electronic components. Halide perovskite memristors operate by mixed ionic–electronic properties that may lead to replicate the live computation elements. Here we explore the dynamical behavior of a halide perovskite memristor model to evaluate the response to a step perturbation and the self-sustained oscillations that produce analog neuron spiking. As the system contains a capacitor and a voltage-dependent chemical inductor, it can mimic an action potential in response to a square current pulse. Furthermore, we discover a property that cannot occur in the standard two-dimensional model systems: a three-dimensional model shows a dynamical instability that produces a spiking regime without the need for an intrinsic negative resistance. These results open a new pathway to create spiking neurons without the support of electronic circuits.

Journal ArticleDOI
TL;DR: In this article , a dual-mode thermometry based on fluorescence intensity ratio and fluorescence lifetime provides a self-reference and highly sensitive temperature measurement under dual wavelength excitation at a temperature from 300 to 470 K.
Abstract: In this Letter, erbium (Er3+) and ytterbium (Yb3+) codoped perovskite Cs2Ag0.6Na0.4In0.9Bi0.1Cl6 microcrystal (MC) is synthesized and demonstrated systematically to the most prospective optical temperature sensing materials. A dual-mode thermometry based on fluorescence intensity ratio and fluorescence lifetime provides a self-reference and highly sensitive temperature measurement under dual wavelength excitation at a temperature from 300 to 470 K. Combined with the white-light emission derived from self-trapped excitons (STEs), the characteristic emission peak of Er3+ ions can be observed under 405 nm laser excitation. The fluorescence intensity ratio (FIR) between perovskite and Er3+ is used as temperature-dependent probe signal, of which maximum value for relative and absolute sensitivities reaches to 1.40% K-1 and 8.20 × 10-2 K-1. Moreover, Er3+ luminescence becomes stronger with the feeding Yb3+ increasing under 980 nm laser excitation. The energy transfer of Er3+ and Yb3+ is revealed by power-dependent photoluminescence (PL) spectroscopy, and the involved upconversion mechanism pertains to the two-photon excitation process. The results reveal that the Er3+/Yb3+ codoped lead-free double perovskite MC is a good candidate for a thermometric material for the novel dual-mode design.

Journal ArticleDOI
TL;DR: In this article , a Pt/Ni3N-Mo2C bifunctional electrocatalyst toward HOR and hydrogen evolution reaction (HER) was proposed. But the performance of the Pt/N3NMo2c was not analyzed.
Abstract: Electrochemical energy conversion and storage through hydrogen has revolutionized sustainable energy systems using fuel cells and electrolyzers. Regrettably, the sluggish alkaline hydrogen oxidation reaction (HOR) hampers advances in fuel cells. Herein, we report a Pt/Ni3N-Mo2C bifunctional electrocatalyst toward HOR and hydrogen evolution reaction (HER). The Pt/Ni3N-Mo2C exhibits remarkable HOR/HER performance in alkaline media. The mass activity at 50 mV and exchange current density of HOR are 5.1 and 1.5 times that of commercial Pt/C, respectively. Moreover, it possesses an impressive HER activity with an overpotential of 11 mV @ 10 mA cm-2, which is lower than that of Pt/C and most reported electrocatalysts under the same conditions. Density functional theory (DFT) calculations combined with experimental results reveal that Pt/Ni3N-Mo2C not only possesses an optimal balance between hydrogen binding energy (HBE) and OH- adsorption but also facilitates water adsorption and dissociation on the catalyst surface, which contribute to the excellent HOR/HER performance. Thus, this work may guide bifunctional HOR/HER catalyst design in the conversion and transport of energy.

Journal ArticleDOI
TL;DR: In this article , a high-throughput screening of high entropy alloy (Cu, Co, Ni, Zn, and Sn) based catalysts through machine learning (ML) for CO2 hydrogenation to methanol was performed.
Abstract: Catalytic conversion of CO2 to carbon neutral fuels can be ecofriendly and allow for economic replacement of fossil fuels. Here, we have investigated high-throughput screening of high entropy alloy (Cu, Co, Ni, Zn, and Sn) based catalysts through machine learning (ML) for CO2 hydrogenation to methanol. Stability and catalytic activity studies of these catalysts have been performed for all possible combinations, where different elemental, compositional, and surface microstructural features were used as input parameters. Adsorption energy values of CO2 reduction intermediates on the CuCoNiZnMg- and CuCoNiZnSn-based catalysts have been used to train the ML models. Successful prediction of adsorption energies of the adsorbates using CuCoNiZnMg-based training data is achieved except for two intermediates. Hence, we show that activity and selectivity of these catalysts can be successfully predicted for CO2 hydrogenation to methanol and have screened a series of high entropy-based catalysts (from 36750 considered catalysts) which could be promising for methanol synthesis.

Journal ArticleDOI
TL;DR: In this article , molecular dynamics simulations with the many-body MB-pol model are performed to monitor the thermodynamic response functions and local structure of liquid water from the boiling point down to deeply supercooled temperatures at ambient pressure.
Abstract: For the past 50 years, researchers have sought molecular models that can accurately reproduce water's microscopic structure and thermophysical properties across broad ranges of its complex phase diagram. Herein, molecular dynamics simulations with the many-body MB-pol model are performed to monitor the thermodynamic response functions and local structure of liquid water from the boiling point down to deeply supercooled temperatures at ambient pressure. The isothermal compressibility and isobaric heat capacity show maxima near 223 K, in excellent agreement with recent experiments, and the liquid density exhibits a minimum at ∼208 K. A local tetrahedral arrangement, where each water molecule accepts and donates two hydrogen bonds, is found to be the most probable hydrogen-bonding topology at all temperatures. This work suggests that MB-pol may provide predictive capability for studies of liquid water's physical properties across broad ranges of thermodynamic states, including the so-called water's "no man's land" which is difficult to probe experimentally.

Journal ArticleDOI
TL;DR: In this paper , the authors proposed liquid sunshine FA/formate as a promising supplement to alcohol and discussed its feasibility, and discussed the current applications, challenges, and opportunities surrounding the use of FA/Formate as liquid sunshine.
Abstract: "Liquid sunshine" is the conceptual green liquid fuel that is produced by a combination of solar energy, CO2, and H2O. Alcohols are commonly regarded as the preferred candidates for liquid sunshine because of their advantages of high energy density and extensive industrial applications. However, both the alcohol synthesis and H2 release processes require harsh reaction conditions, resulting in large external energy input. Unlike alcohols, the synthesis and dehydrogenation of formic acid (FA)/formate can be performed under mild conditions. Herein, we propose liquid sunshine FA/formate as a promising supplement to alcohol. First, we outline the vision of using FA/formate as liquid sunshine and discuss its feasibility. Then, we concentrate on the application of FA/formate as liquid organic hydrogen carrier and summarize the recent developments of CO2 hydrogenation to FA/formate and FA/formate dehydrogenation under mild conditions. Finally, we discuss the current applications, challenges, and opportunities surrounding the use of FA/formate as liquid sunshine.

Journal ArticleDOI
TL;DR: Findings show that AFM-IR spectra of insulin oligomers have strong signals of C-H and PO2- vibrations, which points on the presence of lipids in the oligomer structure, and substantial shifts in lipid vibrations in AFm-IRSpectra of the oligomers relative to the corresponding bands of pure lipids have been observed.
Abstract: Abrupt aggregation of misfolded proteins is a hallmark of a large number of severe pathologies, including diabetes types 1 and 2, Alzheimer, and Parkinson diseases. A growing body of evidence suggests that lipids can uniquely change rates of amyloid-associated proteins as well as modify the structure of formed oligomers and fibrils. In this study, we utilize atomic force microscopy infrared (AFM-IR) spectroscopy, also known as nano-IR spectroscopy, to examine the structure of individual insulin oligomers, protofilaments, and fibrils grown in the presence of phospholipids. Our findings show that AFM-IR spectra of insulin oligomers have strong signals of C-H and PO2- vibrations, which points on the presence of lipids in the oligomer structure. Furthermore, substantial shifts in lipid vibrations in AFM-IR spectra of the oligomers relative to the corresponding bands of pure lipids have been observed. This points on strong interactions between a lipid and a protein that are developed at the stage of the oligomer formation.