scispace - formally typeset
Search or ask a question
JournalISSN: 2075-1702

Machines 

Multidisciplinary Digital Publishing Institute
About: Machines is an academic journal published by Multidisciplinary Digital Publishing Institute. The journal publishes majorly in the area(s): Computer science & Engineering. It has an ISSN identifier of 2075-1702. It is also open access. Over the lifetime, 1866 publications have been published receiving 2959 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
14 Mar 2022-Machines
TL;DR: In this article , the authors present an overview of the state-of-the-art in fault-tolerant multiphase drive systems, focusing on phase/switch open-circuit failures.
Abstract: Multiphase drives offer enhanced fault-tolerant capabilities compared with conventional three-phase ones. Their phase redundancy makes them able to continue running in the event of faults (e.g., open/short-circuits) in certain phases. Moreover, their greater number of degrees of freedom permits improving diagnosis and performance, not only under faults affecting individual phases, but also under those affecting the machine/drive as a whole. That is the case of failures in the dc link, resolver/encoder, control unit, cooling system, etc. Accordingly, multiphase drives are becoming remarkable contenders for applications where high reliability is required, such as electric vehicles and standalone/off-shore generation. Actually, the literature on the subject has grown exponentially in recent years. Various review papers have been published, but none of them currently cover the state-of-the-art in a comprehensive and up-to-date fashion. This two-part paper presents an overview concerning fault tolerance in multiphase drives. Hundreds of citations are classified and critically discussed. Although the emphasis is put on fault tolerance, fault detection/diagnosis is also considered to some extent, because of its importance in fault-tolerant drives. The most important recent advances, emerging trends and open challenges are also identified. Part 1 provides a comprehensive survey considering numerous kinds of faults, whereas Part 2 is focused on phase/switch open-circuit failures.

31 citations

Journal ArticleDOI
18 Feb 2022-Machines
TL;DR: The parallel factor (PARAFAC) decomposition algorithm can extract features from the centrifugal pump experimental data for normal and multiple fault states, establish the mapping relationship of different fault features of the centrifuga pump in time, frequency, and space, and import the fault features into the model classification.
Abstract: Data analysis has wide applications in eliminating the irrelevant and redundant components in signals to reveal the important informational characteristics that are required. Conventional methods for multi-dimensional data analysis via the decomposition of time and frequency information that ignore the information in signal space include independent component analysis (ICA) and principal component analysis (PCA). We propose the processing of a signal according to the continuous wavelet transform and the construction of a three-dimensional matrix containing the time–frequency–space information of the signal. The dimensions of the three-dimensional matrix are reduced by parallel factor analysis, and the time characteristic matrix, frequency characteristic matrix, and spatial characteristic matrix are obtained with tensor decomposition. Through the comparative analysis of the simulation and the experiment, the time characteristic matrix and the frequency characteristic matrix can accurately characterize the normal and fault states of the mechanical equipment. On this basis, the authors established a probabilistic neural network classification model optimized by the improved particle swarm algorithm (IPSO). The parallel factor (PARAFAC) decomposition algorithm can extract features from the centrifugal pump experimental data for normal and multiple fault states, establish the mapping relationship of different fault features of the centrifugal pump in time, frequency, and space, and import the fault features into the model classification. The above measures can significantly improve the fault identification rate and accuracy for a centrifugal pump.

28 citations

Journal ArticleDOI
27 Jan 2022-Machines
TL;DR: The purpose of this article is to systematically review the different planning algorithms specifically used for mobile manipulator motion planning and challenges faced by the current planning algorithms and future research directions are presented.
Abstract: One of the fundamental fields of research is motion planning. Mobile manipulators present a unique set of challenges for the planning algorithms, as they are usually kinematically redundant and dynamically complex owing to the different dynamic behavior of the mobile base and the manipulator. The purpose of this article is to systematically review the different planning algorithms specifically used for mobile manipulator motion planning. Depending on how the two subsystems are treated during planning, sampling-based, optimization-based, search-based, and other planning algorithms are grouped into two broad categories. Then, planning algorithms are dissected and discussed based on common components. The problem of dealing with the kinematic redundancy in calculating the goal configuration is also analyzed. While planning separately for the mobile base and the manipulator provides convenience, the results are sub-optimal. Coordinating between the mobile base and manipulator while utilizing their unique capabilities provides better solution paths. Based on the analysis, challenges faced by the current planning algorithms and future research directions are presented.

26 citations

Journal ArticleDOI
09 Oct 2022-Machines
TL;DR: In this article , the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future.
Abstract: In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future.

26 citations

Journal ArticleDOI
22 Apr 2022-Machines
TL;DR: A deep learning-based object detection algorithm for empty-dish recycling robots to automatically recycle dishes in restaurants and canteens, etc, using a lightweight object detection model YOLO-GD.
Abstract: Due to the workforce shortage caused by the declining birth rate and aging population, robotics is one of the solutions to replace humans and overcome this urgent problem. This paper introduces a deep learning-based object detection algorithm for empty-dish recycling robots to automatically recycle dishes in restaurants and canteens, etc. In detail, a lightweight object detection model YOLO-GD (Ghost Net and Depthwise convolution) is proposed for detecting dishes in images such as cups, chopsticks, bowls, towels, etc., and an image processing-based catch point calculation is designed for extracting the catch point coordinates of the different-type dishes. The coordinates are used to recycle the target dishes by controlling the robot arm. Jetson Nano is equipped on the robot as a computer module, and the YOLO-GD model is also quantized by TensorRT for improving the performance. The experimental results demonstrate that the YOLO-GD model is only 1/5 size of the state-of-the-art model YOLOv4, and the mAP of YOLO-GD achieves 97.38%, 3.41% higher than YOLOv4. After quantization, the YOLO-GD model decreases the inference time per image from 207.92 ms to 32.75 ms, and the mAP is 97.42%, which is slightly higher than the model without quantization. Through the proposed image processing method, the catch points of various types of dishes are effectively extracted. The functions of empty-dish recycling are realized and will lead to further development toward practical use.

26 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023713
20221,260