scispace - formally typeset
Search or ask a question
JournalISSN: 1616-5187

Macromolecular Bioscience 

Wiley
About: Macromolecular Bioscience is an academic journal published by Wiley. The journal publishes majorly in the area(s): Self-healing hydrogels & Medicine. It has an ISSN identifier of 1616-5187. Over the lifetime, 3277 publications have been published receiving 112609 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The aim of this paper is to review the production techniques for PLAs, summarize the main properties of PLA and to delineate the main advantages and disadvantages of PLA as a polymeric packaging material.
Abstract: Polylactide polymers have gained enormous attention as a replacement for conventional synthetic packaging materials in the last decade. By being truly biodegradable, derived from renewable resources and by providing consumers with extra end-use benefits such as avoiding paying the "green tax" in Germany or meeting environmental regulations in Japan, polylactides (PLAs) are a growing alternative as a packaging material for demanding markets. The aim of this paper is to review the production techniques for PLAs, summarize the main properties of PLA and to delineate the main advantages and disadvantages of PLA as a polymeric packaging material. PLA films have better ultraviolet light barrier properties than low density polyethylene (LDPE), but they are slightly worse than those of cellophane, polystyrene (PS) and poly(ethylene terephthalate) (PET). PLA films have mechanical properties comparable to those of PET and better than those of PS. PLA also has lower melting and glass transition temperatures than PET and PS. The glass transition temperature of PLA changes with time. Humidity between 10 and 95% and storage temperatures of 5 to 40 degrees C do not have an effect on the transition temperature of PLA, which can be explained by its low water sorption values (i.e. <100 ppm at Aw = 1). PLA seals well at temperatures below the melting temperature but an appreciable shrinking of the films has been noted when the material is sealed near its melting temperature. Solubility parameter predictions indicate that PLA will interact with nitrogen compounds, anhydrides and some alcohols and that it will not interact with aromatic hydrocarbons, ketones, esters, sulfur compounds or water. The CO2, O2 and water permeability coefficients of PLA are lower than those of PS and higher than those of PET. Its barrier to ethyl acetate and D-limonene is comparable to PET. The amount of lactic acid and its derivatives that migrate to food simulant solutions from PLA is much lower than any of the current average dietary lactic acid intake values allowed by several governmental agencies. Thus, PLA is safe for use in fabricating articles for contact with food.

2,803 citations

Journal ArticleDOI
TL;DR: The present review pretends to give an exhaustive overview on all components needed for making bone tissue engineering a successful therapy, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone.
Abstract: Although several major progresses have been introduced in the field of bone regenerative medicine during the years, current therapies, such as bone grafts, still have many limitations. Moreover, and in spite of the fact that material science technology has resulted in clear improvements in the field of bone substitution medicine, no adequate bone substitute has been developed and hence large bone defects/injuries still represent a major challenge for orthopaedic and reconstructive surgeons. It is in this context that TE has been emerging as a valid approach to the current therapies for bone regeneration/substitution. In contrast to classic biomaterial approach, TE is based on the understanding of tissue formation and regeneration, and aims to induce new functional tissues, rather than just to implant new spare parts. The present review pretends to give an exhaustive overview on all components needed for making bone tissue engineering a successful therapy. It begins by giving the reader a brief background on bone biology, followed by an exhaustive description of all the relevant components on bone TE, going from materials to scaffolds and from cells to tissue engineering strategies, that will lead to "engineered" bone. Scaffolds processed by using a methodology based on extrusion with blowing agents.

1,595 citations

Journal ArticleDOI
TL;DR: Micro-CT images of bone-like constructs that result from transplantation of osteoblasts on gels that degrade over a time frame of several months leading to improved bone formation are presented.
Abstract: [Image: see text] Alginate hydrogels are proving to have a wide applicability as biomaterials. They have been used as scaffolds for tissue engineering, as delivery vehicles for drugs, and as model extracellular matrices for basic biological studies. These applications require tight control of a number of material properties including mechanical stiffness, swelling, degradation, cell attachment, and binding or release of bioactive molecules. Control over these properties can be achieved by chemical or physical modifications of the polysaccharide itself or the gels formed from alginate. The utility of these modified alginate gels as biomaterials has been demonstrated in a number of in vitro and in vivo studies.Micro-CT images of bone-like constructs that result from transplantation of osteoblasts on gels that degrade over a time frame of several months leading to improved bone formation.

1,579 citations

Journal ArticleDOI
TL;DR: The methods for tracing PLA stereocomplexation, the methods for inducing PLA stereocompelxation, and the parameters affecting PLA stereoconplexation are reviewed to open a new way for the preparation of biomaterials such as hydrogels and particles for drug delivery systems.
Abstract: Summary: Poly(lactide)s [i.e. poly(lactic acid) (PLA)] and lactide copolymers are biodegradable, compostable, producible from renewable resources, and nontoxic to the human body and the environment. They have been used as biomedical materials for tissue regeneration, matrices for drug delivery systems, and alternatives for commercial polymeric materials to reduce the impact on the environment. Since stereocomplexation or stereocomplex formation between enantiomeric PLA, poly(L-lactide) [i.e. poly(L-lactic acid) (PLLA)] and poly(D-lactide) [i.e. poly(D-lactic acid) (PDLA)] was reported in 1987, numerous studies have been carried out with respect to the formation, structure, properties, degradation, and applications of the PLA stereocomplexes. Stereocomplexation enhances the mechanical properties, the thermal-resistance, and the hydrolysis-resistance of PLA-based materials. These improvements arise from a peculiarly strong interaction between L-lactyl unit sequences and D-lactyl unit sequences, and stereocomplexation opens a new way for the preparation of biomaterials such as hydrogels and particles for drug delivery systems. It was revealed that the crucial parameters affecting stereocomplexation are the mixing ratio and the molecular weight of L-lactyl and D-lactyl unit sequences. On the other hand, PDLA was found to form a stereocomplex with L-configured polypeptides in 2001. This kind of stereocomplexation is called “hetero-stereocomplexation” and differentiated from “homo-stereocomplexation” between L-lactyl and D-lactyl unit sequences. This paper reviews the methods for tracing PLA stereocomplexation, the methods for inducing PLA stereocompelxation, the parameters affecting PLA stereocomplexation, and the structure, properties, degradation, and applications of a variety of stereocomplexed PLA materials.

1,134 citations

Journal ArticleDOI
Jie Cai1, Lina Zhang1
TL;DR: The results from DSC and (13)C NMR indicated that LiOH/urea and NaOH/UREa aqueous solutions as non-derivatizing solvents broke the intra- and inter-molecular hydrogen bonding of cellulose and prevented the approach toward each other of the cellulose molecules, leading to the good dispersion of cellulOSE to form an actual solution.
Abstract: Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions was studied systematically. The dissolution behavior and solubility of cellulose were evaluated by using (13)C NMR, optical microscopy, wide-angle X-ray diffraction (WAXD), FT-IR spectroscopy, DSC, and viscometry. The experiment results revealed that cellulose having viscosity-average molecular weight ((overline) M eta) of 11.4 x 104 and 37.2 x 104 could be dissolved, respectively, in 7% NaOH/12% urea and 4.2% LiOH/12% urea aqueous solutions pre-cooled to -10 degrees C within 2 min, whereas all of them could not be dissolved in KOH/urea aqueous solution. The dissolution power of the solvent systems was in the order of LiOH/urea > NaOH/urea >> KOH/urea aqueous solution. The results from DSC and (13)C NMR indicated that LiOH/urea and NaOH/urea aqueous solutions as non-derivatizing solvents broke the intra- and inter-molecular hydrogen bonding of cellulose and prevented the approach toward each other of the cellulose molecules, leading to the good dispersion of cellulose to form an actual solution.

808 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023176
2022242
2021217
2020151
2019150
2018146