scispace - formally typeset
Search or ask a question
JournalISSN: 0962-9351

Mediators of Inflammation 

Hindawi Publishing Corporation
About: Mediators of Inflammation is an academic journal published by Hindawi Publishing Corporation. The journal publishes majorly in the area(s): Inflammation & Proinflammatory cytokine. It has an ISSN identifier of 0962-9351. It is also open access. Over the lifetime, 5002 publications have been published receiving 158287 citations.


Papers
More filters
Journal ArticleDOI
Tamás Rőszer1
TL;DR: Whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions is discussed and an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation is provided.
Abstract: The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed.

1,152 citations

Journal ArticleDOI
TL;DR: The cytokine network in OA is put in the context of cells involved in this degenerative joint disease and the possibilities for further implementation of new therapeutic strategies are pointed.
Abstract: Osteoarthritis (OA) is the most common chronic disease of human joints. The basis of pathologic changes involves all the tissues forming the joint; already, at an early stage, it has the nature of inflammation with varying degrees of severity. An analysis of the complex relationships indicates that the processes taking place inside the joint are not merely a set that (seemingly) only includes catabolic effects. Apart from them, anti-inflammatory anabolic processes also occur continually. These phenomena are driven by various mediators, of which the key role is attributed to the interactions within the cytokine network. The most important group controlling the disease seems to be inflammatory cytokines, including IL-1β, TNFα, IL-6, IL-15, IL-17, and IL-18. The second group with antagonistic effect is formed by cytokines known as anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of OA with respect to inter- and intracellular signaling pathways is still under investigation. This paper summarizes the current state of knowledge. The cytokine network in OA is put in the context of cells involved in this degenerative joint disease. The possibilities for further implementation of new therapeutic strategies in OA are also pointed.

1,114 citations

Journal ArticleDOI
TL;DR: The difficulty in the management of obesity/metabolic syndrome is linked to their multifactorial nature where environmental, genetic and psychosocial factors interact through complex networks.
Abstract: The increasing incidence of obesity and the metabolic syndrome is disturbing. The activation of inflammatory pathways, used normally as host defence, reminds the seriousness of this condition. There is probably more than one cause for activation of inflammation. Apparently, metabolic overload evokes stress reactions, such as oxidative, inflammatory, organelle and cell hypertrophy, generating vicious cycles. Adipocyte hypertrophy, through physical reasons, facilitates cell rupture, what will evoke an inflammatory reaction. Inability of adipose tissue development to engulf incoming fat leads to deposition in other organs, mainly in the liver, with consequences on insulin resistance. The oxidative stress which accompanies feeding, particularly when there is excessive ingestion of fat and/or other macronutrients without concomitant ingestion of antioxidant-rich foods/beverages, may contribute to inflammation attributed to obesity. Moreover, data on the interaction of microbiota with food and obesity brought new hypothesis for the obesity/fat diet relationship with inflammation. Beyond these, other phenomena, for instance psychological and/or circadian rhythm disturbances, may likewise contribute to oxidative/inflammatory status. The difficulty in the management of obesity/metabolic syndrome is linked to their multifactorial nature where environmental, genetic and psychosocial factors interact through complex networks.

877 citations

Journal ArticleDOI
TL;DR: The effects and mechanisms of naturally occurring phenolic compounds on iNOS expression and NO production in activated macrophages partially explain the pharmacological efficacy of flavonoids as anti-inflammatory compounds.
Abstract: In inflammation, bacterial products and proinflammatory cytokines induce the formation of large amounts of nitric oxide (NO) by inducible nitric oxide synthase (iNOS), and compounds that inhibit NO production have anti-inflammatory effects. In the present study, we systematically investigated the effects of 36 naturally occurring flavonoids and related compounds on NO production in macrophages exposed to an inflammatory stimulus (lipopolysaccharide, LPS), and evaluated the mechanisms of action of the effective compounds. Flavone, the isoflavones daidzein and genistein, the flavonols isorhamnetin, kaempferol and quercetin, the flavanone naringenin, and the anthocyanin pelargonidin inhibited iNOS protein and mRNA expression and also NO production in a dose-dependent manner. All eight active compounds inhibited the activation of nuclear factor-κB (NF-κB), which is a significant transcription factor for iNOS. Genistein, kaempferol, quercetin, and daidzein also inhibited the activation of the signal transducer and activator of transcription 1 (STAT-1), another important transcription factor for iNOS. The present study characterises the effects and mechanisms of naturally occurring phenolic compounds on iNOS expression and NO production in activated macrophages. The results partially explain the pharmacological efficacy of flavonoids as anti-inflammatory compounds.

857 citations

Journal ArticleDOI
TL;DR: The current knowledge about distinct signalling cascades resulting from self TLR activation is explored and the involvement of endogenous TLR activators in disease is discussed to highlight how specifically targeting DAMPs may yield therapies that do not globally suppress the immune system.
Abstract: Damage-associated molecular patterns (DAMPs) include endogenous intracellular molecules released by activated or necrotic cells and extracellular matrix (ECM) molecules that are upregulated upon injury or degraded following tissue damage. DAMPs are vital danger signals that alert our immune system to tissue damage upon both infectious and sterile insult. DAMP activation of Toll-like receptors (TLRs) induces inflammatory gene expression to mediate tissue repair. However, DAMPs have also been implicated in diseases where excessive inflammation plays a key role in pathogenesis, including rheumatoid arthritis (RA), cancer, and atherosclerosis. TLR activation by DAMPs may initiate positive feedback loops where increasing tissue damage perpetuates pro-inflammatory responses leading to chronic inflammation. Here we explore the current knowledge about distinct signalling cascades resulting from self TLR activation. We also discuss the involvement of endogenous TLR activators in disease and highlight how specifically targeting DAMPs may yield therapies that do not globally suppress the immune system.

778 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023116
2022211
2021229
2020349
2019299
2018285