scispace - formally typeset
Search or ask a question
JournalISSN: 1556-2085

Petrology 

MAIK Nauka/Interperiodica
About: Petrology is an academic journal published by MAIK Nauka/Interperiodica. The journal publishes majorly in the area(s): Basalt & Mantle (geology). It has an ISSN identifier of 1556-2085. Over the lifetime, 736 publications have been published receiving 7866 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the evolution of calc-alkaline magmatism in the Western Okhotsk-Chukotka volcanic belt (OCVB), a tectonotype of continental margin volcanic belts comprising much greater volumes of felsic ignimbritic volcanics compared with mature island arcs.
Abstract: Petrological, geochemical, and isotope geochronological aspects of the evolution of calc-alkaline magmatism were investigated in the Western Okhotsk flank zone, the Okhotsk segment, and the Eastern Chukchi flank zone of the Okhotsk-Chukotka volcanic belt (OCVB). The OCVB is a tectonotype of continental margin volcanic belts comprising much greater volumes of felsic ignimbritic volcanics compared with mature island arcs (MIA, Kuril-Kamchatka and Aleutian) and the Andean continental margin. The volcanic rocks of continental margin volcanic belts (OCVB and Andean belt) are enriched in K, Ti, and P compared with the rocks of MIA and show a trend toward the field of high-potassium calc-alkaline series. Primitive andesite varieties (Mg# > 0.6) were not yet found in the OCVB, but there are relatively calcic varieties unknown in Andean-type structures and a significant fraction of moderately alkaline rocks, which are not typical of MIA. Variations in trace and major element characteristics in the basalts and andesites of the OCVB were interpreted as reflecting the competing processes of assimilation/mixing and fractional crystallization during the evolution of the parental basaltic magma. Significant lateral variations were established in the composition of the mantle sources of calc-alkaline magmas along the OCVB over more than 2500 km. The initial isotopic ratios of Sr, Nd, and Pb in the volcanics of the Okhotsk segment are relatively depleted and fall near the mixing line between PREMA and BSE. The magma source of the Western Okhotsk flank zone is most enriched and approaches EMI, whereas that of the central and eastern Chukchi zones contains an admixture of the EMII component. The geochronological characteristics of all the main stages of OCVB magmatism were comprehensively studied by U-Pb SHRIMP and ID-TIMS zircon dating (86 samples) and 40Ar/39Ar analysis (73 samples). In general, a discontinuous character was established for the OCVB magmatism from the middle Albian to the early Campanian (106–77 Ma). The volcanism is laterally asynchronous. There are several peaks of volcanism with modes at approximately 105, 100, 96, 92.5, 87, 82, and 77 Ma. The Coniacian-Santonian peaks correspond to the most extensive stages of the middle and late cycles of felsic volcanism. A decreases and a hiatus in magmatic activity were reconstructed for the end of the Cenomanian and the beginning of the Turonian. The volcanism was terminated by plateau basalts with ages of 76–78 Ma, which mark a change in the geodynamic setting from frontal subduction to the regime of a transform margin with local extension in zones normal to the slip direction. A catastrophic character of eruptions with rather narrow ranges of volcanism (<2 Myr) were established taking into account new reliable age estimates for some individual large calderas. The accumulation rate of volcanic materials in such structures was up to 0.15–0.36 km3/yr and even higher.

139 citations

Journal ArticleDOI
TL;DR: In this article, the formation and evolution of the parent melts and mantle sources of Siberian trap magmatism were evaluated based on the investigation of olivine phenocrysts and melt and spinel inclusions in them from the picrites of the Gudchikhinsky Formation and olivines equilibrated with the products of peridotite melting.
Abstract: Based on the investigation of olivine phenocrysts and melt and spinel inclusions in them from the picrites of the Gudchikhinsky Formation and olivine phenocrysts and the whole-rock geochemistry from the Tuklonsky and Nadezhdinsky formations of the Noril'sk region, the compositions and conditions of formation and evolution of the parental melts and mantle sources of Siberian trap magmatism were evaluated. Olivine phe- nocrysts from the samples studied are enriched in Ni and depleted in Mn compared with olivines equilibrated with the products of peridotite melting, which suggests a considerable role of a nonperidotitic component (oli- vine-free pyroxenite) in their mantle source. The onset of Siberian trap magmatism (Gudchikhinsky Formation) was related to the melting of pyroxenite produced by the interaction of ancient recycled oceanic crust with man- tle peridotite. During the subsequent evolution of the magmatic system (development of the Tuklonsky and Nadezhdinsky formations), the fraction of the pyroxenite component in the source region decreased rapidly (to 40 and 60%, respectively) owing to the entrainment of peridotite material into the melting zone. The formation of magmas was significantly affected by the contamination by continental crustal material. The primitive mag- mas of the Gudchikhinsky Formation crystallized under near-surface conditions at temperatures of 1250- 1170 ° C and oxygen fugacities 2.5-3.0 orders of magnitude below the Ni-NiO buffer. Simultaneously, the mag- mas were contaminated by continental silicic rocks and evaporites. The parental magmas of the Gudchikhinsky rocks corresponded to tholeiitic picrites with 11-14 wt % MgO. They were strongly undersaturated in sulfur, contained less than 0.25 wt % water and carbon dioxide, and were chemically similar to the Hawaiian tholeiites. They were produced by melting of a pyroxenite source at depths of 130-180 km in a mantle plume with a poten- tial temperature of 1500-1580 ° C. The presence of low melting temperature pyroxenite material in the source of Siberian trap magmas promoted the formation of considerable volumes of melt under the thick continental lithosphere, which could trigger its catastrophic collapse. The contribution of pyroxenite-derived melt to the magmas of the Siberian trap province was no less than 40-50%. This component, whose solid residue was free of sulfides and olivine, played a key role in the origin of high contents of Ni, Cu, and Pt-group elements and low sulfur contents in the parental trap magmas and prevented the early dispersion of these elements at the expense of sulfide melt fractionation. The high contents of Cl in the magmas resulted in considerable HCl emis- sion into the atmosphere and could be responsible for the mass extinction at the Paleozoic-Mesozoic boundary.

116 citations

Journal ArticleDOI
TL;DR: The Zr-Hf geochemical indicator, i.e., the Zr/Hf ratio (in wt %) in granitic rocks is proposed to be used as the most reliable indicator of the fractionation and ore potential of rare-metal granites.
Abstract: The Zr-Hf geochemical indicator, i.e., the Zr/Hf ratio (in wt %) in granitic rocks is proposed to be used as the most reliable indicator of the fractionation and ore potential of rare-metal granites. It was empirically determined that the fractional crystallization of granitic magma according to the scheme granodiorite → biotite granite → leucogranite → Li-F granite is associated with a decrease in the Zr/Hf ratio of the granites. The reason for this is the stronger affinity of Hf than Zr to granitic melt. This was confirmed by experiments on Zr and Hf distribution between granitic melt and crystals of Hf-bearing zircon (T = 800°C, P= 1 kbar). The application of the Zr/Hf indicator was tested at three classic territories of rare-metal granites: eastern Transbaikalia, central Kazakhstan, and the Erzgebirge in the Czech Republic and Germany. The reference Kukul’bei complex of rare-metal granites in eastern Transbaikalia (J3) is characterized by a uniquely high degree of fractionation of the parental granitic melt, with the granites and their vein derivatives forming three intrusive phases. The biotite granites of phase 1 are barren, the leucogranites of phase 2 are accompanied by greisen Sn-W mineral deposits (Spokoininskoe and others), and the final dome-shaped stocks of amazonite Li-F granites of phase 3 host (in their upper parts) Ta deposits of the “apogranite” type: Orlovka, Etyka, and Achikan. The Kukul’bei Complex includes also dikes of ongonites, elvanes, amazonite granites, and miarolitic pegmatites. All granitic rocks of the complex are roughly coeval and have an age of 142±0.6 Ma. The Zr/Hf ratio of the rocks systematically decreases from intrusive phase 1 (40–25) to phases 2 (20–30) and 3 (10–2). Compared to other granite series, the granites of the Kukul’bei Complex are enriched in Rb, Li, Cs, Be, Sn, W, Mo, Ta, Nb, Bi, and F but are depleted in Mg, Ca, Fe, Ti, P, Sr, Ba, V, Co, Ni, Cr, Zr, REE, and Y. From earlier to later intrusive phases, the rocks become progressively more strongly enriched or depleted in these elements, and their Zr/Hf ratio systematically decreases from 40 to 2. This ratio serves as a reliable indicator of genetic links, degree of fractionation, and rare-metal potential of granites. Greisen Sn, W, Mo, and Be deposits are expected to accompany granites with Zr/Hf < 25, whereas granites related to Ta deposits should have Zr/Hf < 5.

88 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discussed the composition, inner structure, and age of volcanic and siliceous-terrigenous complexes and granitoids occurring in association with them in the Caledonian Lake zone in Central Asia.
Abstract: Data on the composition, inner structure, and age of volcanic and siliceous-terrigenous complexes and granitoids occurring in association with them in the Caledonian Lake zone in Central Asia are discussed in the context of major relations and trends in the growth of the Caledonian continental crust in the Central Asian Foldbelt (CAFB). The folded structures of the Lake zone host basalt, basalt-andesite, and andesite complexes of volcanic rocks that were formed in distinct geodynamic environments. The volcanic rocks of the basalt complex are noted for high concentrations of TiO2 and alkalis, occur in association with fine-grained siliceous siltstone and siliceous-carbonate rocks, are thus close to oceanic-island complexes, and were likely formed in relation to a mantle hotspot activity far away from erosion regions supplying terrigenous material. The rocks of the basalt-andesite and andesite complexes have lower TiO2 concentrations and moderate concentrations of alkalis and contain rock-forming amphibole. These rocks are accompanied by rudaceous terrigenous sediments, which suggests their origin in island-arc environments, including arcs with a significantly dissected topography. These complexes are accompanied by siliceous-terrigenous sedimentary sequences whose inner structure is close to those of sediments in accretionary wedges. The folded Caledonides of the Lake zone passed through the following evolutionary phases. The island arcs started to develop at 570 Ma, their evolution was associated with the emplacement of layered gabbroids and tonalitetrondhjemite massifs, and continued until the onset of accretion at 515–480 Ma. The accretion was accompanied by the emplacement of large massifs of the tonalite-granodiorite-plagiogranite series. The postaccretionary evolutionary phase at 470–440 Ma of the Caledonides was marked by intrusive subalkaline and alkaline magmatism. The Caledonides are characterized by within-plate magmatic activity throughout their whole evolutionary history, a fact explained by the accretion of Vendian-Cambrian oceanic structures (island arcs, oceanic islands, and back-arc basins) above a mantle hotspot. Indicators of within-plate magmatic activity are subalkaline high-Ti basalts, alkaline-ultrabasic complexes with carbonatites and massifs of subalkaline and alkaline gabbroids, nepheline syenites, alkaline granites, subalkaline granites, and granosyenites. The mantle hotspot likely continued to affect the character of the lithospheric magmatism even after the Caledonian folded terrane was formed.

84 citations

Journal ArticleDOI
TL;DR: The results of a complex study of melt inclusions in olivine phenocrysts contained in unaltered kimberlites from the Udachnaya-East pipe indicate that the inclusions were captured late during the magmatic stage, perhaps, under a pressure of <1 kbar and a temperature of ≤800°C as discussed by the authors.
Abstract: The results of a complex study of melt inclusions in olivine phenocrysts contained in unaltered kimberlites from the Udachnaya-East pipe indicate that the inclusions were captured late during the magmatic stage, perhaps, under a pressure of <1 kbar and a temperature of ≤800°C. The inclusions consist of fine crystalline aggregates (carbonates + sulfates + chlorides) + gas ± crystalline phases. Minerals identified among the transparent daughter phases of the inclusions are silicates (tetraferriphlogopite, olivine, humite or clinohumite, diopside, and monticellite), carbonates (calcite, dolomite, siderite, northupite, and Na-Ca carbonates), Na and K chlorides, and alkali sulfates. The ore phases are magnetite, djerfisherite, and monosulfide solid solution. The inclusions are derivatives of the kimberlite melt. The complex silicate-carbonate-salt composition of the secondary melt inclusions in olivine from the kimberlite suggests that the composition of the kimberlite melt near the surface differed from that of the initial melt composition in having higher contents of CaO, FeO, alkalis, and volatiles (CO2, H2O, F, Cl, and S) at lower concentrations of SiO2, MgO, Al2O3, Cr2O3, and TiO2. Hence, when crystallizing, the kimberlite melt evolved toward carbonatite compositions. The last derivatives of the kimberlite melt had an alkaline carbonatite composition.

83 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202332
202289
202135
202031
201935
201835