scispace - formally typeset
Search or ask a question
JournalISSN: 0735-9640

Plant Molecular Biology Reporter 

Springer Science+Business Media
About: Plant Molecular Biology Reporter is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Gene & Arabidopsis. It has an ISSN identifier of 0735-9640. Over the lifetime, 2177 publications have been published receiving 80764 citations. The journal is also known as: Plant Mol Biol Report.


Papers
More filters
Journal ArticleDOI
TL;DR: The topic of this report is rap,d m,croscale methods for,solat,on of plant D N A without tile use of ul tracentr ,fugatlon wEth CsCI, which is of moderately high molecular weight and serves as a satisfactory substrate for most restrlctum cndonucleases and is statable for genom,c blot analys,s.
Abstract: The topic of this report is rap,d m,croscale methods for ,solat,on of plant D N A without tile use of ul tracentr ,fugatlon wEth CsCI. The D N A produced ,s of moderately high molecular weight and serves as a satisfactory substrate for most restrlctum cndonucleases and is statable for genom,c blot analys,s. In addi t ion to the rapidi ty and convenience of mlmpreps which permit a large number of samples to be processed in just a few hours, the small amount of tissue reqmred (less than 1.0 grams) allows tbr molecular analysis of plants at a very young stage Mm,prep D N A y,elds from leaf tissue of most species tested to date are typ,cally 30-100 big per gram tissue, greater than 50 kb, and remarkably uniform from sample to sample. The first mmlprep procedure we reported fi3r maize D N A isolation (Dellaporta et al , ;'*l,;tze Geneta3 Cr162162 Neu'_~letlrt. 1983) was adapted from a procedure commonly used for }'east D N A preparatmn (Dav,s et al. , 1980) Since th,s report, numerous personal commun,cat ,ons have demonstrated that the mm,prep procedure or a modification thereof, can be apphed to most plant species tested. For example, the method has been successfully used on Ntcottana hlgl~um. N. plumklgmgidtum. N. 3)/t'eJtrt~. L)s~opertcum sp.. Amar,mthm sp . Gl)~me max. Petuma h.~hra&. Several modifications have been apphed by these ,nvestlgators and in our own laboratory m order to extend the appl ,catmn of ram,prep procedures to other plant species. The select,on of a part icular protocol depends to a large degree on the plant spec,es used. However, the procedure reported here was selected to be statable for most situations.

7,263 citations

Journal ArticleDOI
TL;DR: Gene fusions can be defined its DNA constructions that result in the coding sequences from one gene (r@o,ter) being transcribed and/or translated under the direction of the controlling sequences of another gene (cmltrr).
Abstract: DeJi~eitio, r Ge~e lrlt.~irm Much of tile attention and interest in modern molecular biology is fi~cussed on the regulation of gene expression. Factors influencing or mediating such regulation are often best studied using gene Alsions. Gene fusions can be defined its DNA constructions (perfi3rmed ill vitro or i~e Hvo) that result in the coding sequences from one gene (r@o,ter) being transcribed and/or translated under the direction of the controlling sequences of another gene (cmltrr Gene fusions can be of two general types, with many wtriatiuns within types. Transcriptional fusions are defined as fusions in which all protein coding sequences are derived from the reporter, with none from the cmm,//e~. Thus, although the m R N A produced may consist of sequences from both control/o and re/;o~ter, the protein synthesized will be encoded only by the reporter. Translational fusions, in contrast, are defined as those in which the polypeptide produced is the result of coding information provided by both copraoiler and reporter.

4,518 citations

Journal ArticleDOI
TL;DR: This survey identified several horticultural crops in a variety of families with genomes only two or three times as large asArabidopsis and several fruit trees (a pricot, cherry, mango, orange, papaya, and peach) that should facilitate molecular studies of these crops.
Abstract: Nuclear DNA contents of more than 100 important plant species were measured by flow cytometry of isolated nuclei stained with propidium iodide.Arabidopsis exhibits developmentally regulated multiploidy and has a 2C nuclear DNA content of 0.30 pg (145 Mbp/1C), twice the value usually cited. The 2C value for rice is only about three times that ofArabidopsis. Tomato has a 2C value of about 2.0 pg, larger than commonly cited. This survey identified several horticultural crops in a variety of families with genomes only two or three times as large asArabidopsis; these include several fruit trees (a pricot, cherry, mango, orange, papaya, and peach). The small genome sizes of rice and the horticultural plants should facilitate molecular studies of these crops.

2,930 citations

Journal ArticleDOI
TL;DR: This is the first procedure for the isolation of DNA from mature strawberry leaf tissue that produces consistent results for a variety of different species, both octoploid and diploid, and is both stable and PCR amplifiable before and after extended storage.
Abstract: A relatively quick, inexpensive and consistent protocol for extraction of DNA from expanded leaf material containing large quantities of polyphenols, tannins and polysaccharides is described. Mature strawberry leaves, which contain high levels of these secondary components, were used as a study group. The method involves a modified CTAB extraction, employing high salt concentrations to remove polysaccharides, the use of polyvinyl pyrrolidone (PVP) to remove polyphenols, an extended RNase treatment and a phenol-chloroform extraction. Average yields range from 20 to 84 μg/g mature leaf tissue for both wild and cultivated octoploid and diploidFragaria species. Results from 60 plants were examined, and were consistently amplifiable in the RAPD reaction with as little as 0.5 ng DNA per 25-μL reaction. Presently, this is the first procedure for the isolation of DNA from mature strawberry leaf tissue that produces consistent results for a variety of different species, both octoploid and diploid, and is both stable and PCR amplifiable before and after extended storage. This procedure may prove useful for other difficult species in the family Rosaceae.

1,869 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202331
202251
202192
202053
201939
201877