scispace - formally typeset
Search or ask a question

Showing papers in "Symmetry in 2017"


Journal ArticleDOI
29 Dec 2017-Symmetry
TL;DR: This research indicates that the proposed deep learning model provides a better solution in disease control for apple leaf diseases with high accuracy and a faster convergence rate, and that the image generation technique proposed in this paper can enhance the robustness of the convolutional neural network model.
Abstract: Mosaic, Rust, Brown spot, and Alternaria leaf spot are the four common types of apple leaf diseases. Early diagnosis and accurate identification of apple leaf diseases can control the spread of infection and ensure the healthy development of the apple industry. The existing research uses complex image preprocessing and cannot guarantee high recognition rates for apple leaf diseases. This paper proposes an accurate identifying approach for apple leaf diseases based on deep convolutional neural networks. It includes generating sufficient pathological images and designing a novel architecture of a deep convolutional neural network based on AlexNet to detect apple leaf diseases. Using a dataset of 13,689 images of diseased apple leaves, the proposed deep convolutional neural network model is trained to identify the four common apple leaf diseases. Under the hold-out test set, the experimental results show that the proposed disease identification approach based on the convolutional neural network achieves an overall accuracy of 97.62%, the model parameters are reduced by 51,206,928 compared with those in the standard AlexNet model, and the accuracy of the proposed model with generated pathological images obtains an improvement of 10.83%. This research indicates that the proposed deep learning model provides a better solution in disease control for apple leaf diseases with high accuracy and a faster convergence rate, and that the image generation technique proposed in this paper can enhance the robustness of the convolutional neural network model.

463 citations


Journal ArticleDOI
18 Aug 2017-Symmetry
TL;DR: The concept of blockchain technology and its hot research trends are discussed and how to adapt blockchain security to cloud computing and its secure solutions in detail is studied.
Abstract: Blockchain has drawn attention as the next-generation financial technology due to its security that suits the informatization era. In particular, it provides security through the authentication of peers that share virtual cash, encryption, and the generation of hash value. According to the global financial industry, the market for security-based blockchain technology is expected to grow to about USD 20 billion by 2020. In addition, blockchain can be applied beyond the Internet of Things (IoT) environment; its applications are expected to expand. Cloud computing has been dramatically adopted in all IT environments for its efficiency and availability. In this paper, we discuss the concept of blockchain technology and its hot research trends. In addition, we will study how to adapt blockchain security to cloud computing and its secure solutions in detail.

221 citations


Journal ArticleDOI
21 Dec 2017-Symmetry
TL;DR: This paper clarifies the hierarchical structure of the sharp constants for the discrete Sobolev inequality on a weighted complete graph, introduces a generalized-graph Laplacian A = I − B on the graph, and investigates two types of discrete Sobolesv inequalities.
Abstract: This paper clarifies the hierarchical structure of the sharp constants for the discrete Sobolev inequality on a weighted complete graph. To this end, we introduce a generalized-graph Laplacian A = I − B on the graph, and investigate two types of discrete Sobolev inequalities. The sharp constants C 0 ( N ; a ) and C 0 ( N ) were calculated through the Green matrix G ( a ) = ( A + a I ) − 1 ( 0 < a < ∞ ) and the pseudo-Green matrix G ∗ = A † . The sharp constants are expressed in terms of the expansion coefficients of the characteristic polynomial of A. Based on this new discovery, we provide the first proof that each set of the sharp constants { C 0 ( n ; a ) } n = 2 N and { C 0 ( n ) } n = 2 N satisfies a certain hierarchical structure.

167 citations


Journal ArticleDOI
01 Oct 2017-Symmetry
TL;DR: The analysis results of the case demonstrate the feasibility and effectiveness of the proposed neutrosophic statistical analysis of JRC-NNs and can overcome the insufficiencies of the classical statistics and fitting functions.
Abstract: In rock mechanics, the study of shear strength on the structural surface is crucial to evaluating the stability of engineering rock mass. In order to determine the shear strength, a key parameter is the joint roughness coefficient (JRC). To express and analyze JRC values, Ye et al. have proposed JRC neutrosophic numbers (JRC-NNs) and fitting functions of JRC-NNs, which are obtained by the classical statistics and curve fitting in the current method. Although the JRC-NNs and JRC-NN functions contain much more information (partial determinate and partial indeterminate information) than the crisp JRC values and functions in classical methods, the JRC functions and the JRC-NN functions may also lose some useful information in the fitting process and result in the function distortion of JRC values. Sometimes, some complex fitting functions may also result in the difficulty of their expressions and analyses in actual applications. To solve these issues, we can combine the neutrosophic numbers with neutrosophic statistics to realize the neutrosophic statistical analysis of JRC-NNs for easily analyzing the characteristics (scale effect and anisotropy) of JRC values. In this study, by means of the neutrosophic average values and standard deviations of JRC-NNs, rather than fitting functions, we directly analyze the scale effect and anisotropy characteristics of JRC values based on an actual case. The analysis results of the case demonstrate the feasibility and effectiveness of the proposed neutrosophic statistical analysis of JRC-NNs and can overcome the insufficiencies of the classical statistics and fitting functions. The main advantages of this study are that the proposed neutrosophic statistical analysis method not only avoids information loss but also shows its simplicity and effectiveness in the characteristic analysis of JRC.

141 citations


Journal ArticleDOI
20 Jul 2017-Symmetry
TL;DR: In this article, a neutrosophic interval statistical number (NISN) was proposed to express the joint roughness coefficient (JRC) under indeterminate (imprecise, incomplete, and uncertain) environments.
Abstract: In nature, the mechanical properties of geological bodies are very complex, and their various mechanical parameters are vague, incomplete, imprecise, and indeterminate. However, we cannot express them by the crisp values in classical probability and statistics. In geotechnical engineering, we need to try our best to approximate exact values in indeterminate environments because determining the joint roughness coefficient (JRC) effectively is a key parameter in the shear strength between rock joint surfaces. In this original study, we first propose neutrosophic interval probability (NIP) and define the confidence degree based on the cosine measure between NIP and the ideal NIP. Then, we propose a new neutrosophic interval statistical number (NISN) by combining the neutrosophic number with the confidence degree to express indeterminate statistical information. Finally, we apply NISNs to express JRC under indeterminate (imprecise, incomplete, and uncertain, etc.) environments. By an actual case, the results demonstrate that NISNs are suitable and effective for JRC expressions and have the objective advantage.

134 citations


Journal ArticleDOI
02 Jun 2017-Symmetry
TL;DR: A multiple attribute decision-making (MADM) method based on the SVNWAA or SVNWGA operator under a SVNN environment is developed and an illustrative example about the selection problem of investment alternatives is given to demonstrate the application and feasibility of the developed approach.
Abstract: The Dombi operations of T-norm and T-conorm introduced by Dombi can have the advantage of good flexibility with the operational parameter In existing studies, however, the Dombi operations have so far not yet been used for neutrosophic sets To propose new aggregation operators for neutrosophic sets by the extension of the Dombi operations, this paper firstly presents the Dombi operations of single-valued neutrosophic numbers (SVNNs) based on the operations of the Dombi T-norm and T-conorm, and then proposes the single-valued neutrosophic Dombi weighted arithmetic average (SVNDWAA) operator and the single-valued neutrosophic Dombi weighted geometric average (SVNDWGA) operator to deal with the aggregation of SVNNs and investigates their properties Because the SVNDWAA and SVNDWGA operators have the advantage of good flexibility with the operational parameter, we develop a multiple attribute decision-making (MADM) method based on the SVNWAA or SVNWGA operator under a SVNN environment Finally, an illustrative example about the selection problem of investment alternatives is given to demonstrate the application and feasibility of the developed approach

130 citations


Journal ArticleDOI
28 Sep 2017-Symmetry
TL;DR: A nature-inspired optimization algorithm, which is based on a novel mathematical model of the way polar bears move in the search for food and hunt, to improve global and local search within the solution space.
Abstract: In the proposed article, we present a nature-inspired optimization algorithm, which we called Polar Bear Optimization Algorithm (PBO). The inspiration to develop the algorithm comes from the way polar bears hunt to survive in harsh arctic conditions. These carnivorous mammals are active all year round. Frosty climate, unfavorable to other animals, has made polar bears adapt to the specific mode of exploration and hunting in large areas, not only over ice but also water. The proposed novel mathematical model of the way polar bears move in the search for food and hunt can be a valuable method of optimization for various theoretical and practical problems. Optimization is very similar to nature, similarly to search for optimal solutions for mathematical models animals search for optimal conditions to develop in their natural environments. In this method. we have used a model of polar bear behaviors as a search engine for optimal solutions. Proposed simulated adaptation to harsh winter conditions is an advantage for local and global search, while birth and death mechanism controls the population. Proposed PBO was evaluated and compared to other meta-heuristic algorithms using sample test functions and some classical engineering problems. Experimental research results were compared to other algorithms and analyzed using various parameters. The analysis allowed us to identify the leading advantages which are rapid recognition of the area by the relevant population and efficient birth and death mechanism to improve global and local search within the solution space.

120 citations


Journal ArticleDOI
17 Nov 2017-Symmetry
TL;DR: In this study, the supplier selection was performed in the construction company, on the basis of a new approach in the field of multi-criteria model, an extension of the COPRAS and MULTIMOORA method by rough numbers was performed and the findings of the comparative analysis were presented.
Abstract: Supply chain presents a very complex field involving a large number of participants. The aim of the complete supply chain is finding an optimum from the aspect of all participants, which is a rather complex task. In order to ensure optimum satisfaction for all participants, it is necessary that the beginning phase consists of correct evaluations and supplier selection. In this study, the supplier selection was performed in the construction company, on the basis of a new approach in the field of multi-criteria model. Weight coefficients were obtained by DEMATEL (Decision Making Trial and Evaluation Laboratory) method, based on the rough numbers. Evaluation and the supplier selection were made on the basis of a new Rough EDAS (Evaluation based on Distance from Average Solution) method, which presents one of the latest methods in this field. In order to determine the stability of the model and the applicability of the proposed Rough EDAS method, an extension of the COPRAS and MULTIMOORA method by rough numbers was also performed in this study, and the findings of the comparative analysis were presented. Besides the new approaches based on the extension by rough numbers, the results are also compared with the Rough MABAC (MultiAttributive Border Approximation area Comparison) and Rough MAIRCA (MultiAttributive Ideal-Real Comparative Analysis). In addition, in the sensitivity analysis, 18 different scenarios were formed, the ones in which criteria change their original values. At the end of the sensitivity analysis, SCC (Spearman Correlation Coefficient) of the obtained ranges was carried out, confirming the applicability of the proposed approaches.

110 citations


Journal ArticleDOI
04 Nov 2017-Symmetry
TL;DR: A new approach based on a combination of the Simple Additive Weighting method and rough numbers, which is used for ranking the potential solutions and selecting the most suitable one, shows very high stability of the model and ranks that are the same or similar in different scenarios.
Abstract: The rationalization of logistics activities and processes is very important in the business and efficiency of every company. In this respect, transportation as a subsystem of logistics, whether internal or external, is potentially a huge area for achieving significant savings. In this paper, the emphasis is placed upon the internal transport logistics of a paper manufacturing company. It is necessary to rationalize the movement of vehicles in the company’s internal transport, that is, for the majority of the transport to be transferred to rail transport, because the company already has an industrial track installed in its premises. To do this, it is necessary to purchase at least two used wagons. The problem is formulated as a multi-criteria decision model with eight criteria and eight alternatives. The paper presents a new approach based on a combination of the Simple Additive Weighting (SAW) method and rough numbers, which is used for ranking the potential solutions and selecting the most suitable one. The rough Best–Worst Method (BWM) was used to determine the weight values of the criteria. The results obtained using a combination of these two methods in their rough form were verified by means of a sensitivity analysis consisting of a change in the weight criteria and comparison with the following methods in their conventional and rough forms: the Analytic Hierarchy Process (AHP), Technique for Ordering Preference by Similarity to Ideal Solution (TOPSIS) and MultiAttributive Border Approximation area Comparison (MABAC). The results show very high stability of the model and ranks that are the same or similar in different scenarios.

108 citations


Journal ArticleDOI
04 Nov 2017-Symmetry
TL;DR: A two-stage iris segmentation scheme based on convolutional neural network (CNN) is proposed, capable of accurate iris segmentsation in severely noisy environments of iris recognition by visible light camera sensor.
Abstract: Existing iris recognition systems are heavily dependent on specific conditions, such as the distance of image acquisition and the stop-and-stare environment, which require significant user cooperation. In environments where user cooperation is not guaranteed, prevailing segmentation schemes of the iris region are confronted with many problems, such as heavy occlusion of eyelashes, invalid off-axis rotations, motion blurs, and non-regular reflections in the eye area. In addition, iris recognition based on visible light environment has been investigated to avoid the use of additional near-infrared (NIR) light camera and NIR illuminator, which increased the difficulty of segmenting the iris region accurately owing to the environmental noise of visible light. To address these issues; this study proposes a two-stage iris segmentation scheme based on convolutional neural network (CNN); which is capable of accurate iris segmentation in severely noisy environments of iris recognition by visible light camera sensor. In the experiment; the noisy iris challenge evaluation part-II (NICE-II) training database (selected from the UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE) dataset were used. Experimental results showed that our method outperformed the existing segmentation methods.

104 citations


Journal ArticleDOI
29 Jul 2017-Symmetry
TL;DR: The presented extension of the COMET method is extended to solve problems for Multi-Criteria Group Decision-Making (MCGDM) in a hesitant fuzzy environment and is completely free of the rank reversal phenomenon, which is identified as one of the most important MCDM challenges.
Abstract: There are many real-life problems that, because of the need to involve a wide domain of knowledge, are beyond a single expert. This is especially true for complex problems. Therefore, it is usually necessary to allocate more than one expert to a decision process. In such situations, we can observe an increasing importance of uncertainty. In this paper, the Multi-Criteria Decision-Making (MCDM) method called the Characteristic Objects Method (COMET) is extended to solve problems for Multi-Criteria Group Decision-Making (MCGDM) in a hesitant fuzzy environment. It is a completely new idea for solving problems of group decision-making under uncertainty. In this approach, we use L-R-type Generalized Fuzzy Numbers (GFNs) to get the degree of hesitancy for an alternative under a certain criterion. Therefore, the classical COMET method was adapted to work with GFNs in group decision-making problems. The proposed extension is presented in detail, along with the necessary background information. Finally, an illustrative numerical example is provided to elaborate the proposed method with respect to the support of a decision process. The presented extension of the COMET method, as opposed to others’ group decision-making methods, is completely free of the rank reversal phenomenon, which is identified as one of the most important MCDM challenges.

Journal ArticleDOI
24 Aug 2017-Symmetry
TL;DR: The VIKOR (VIsekriterijumska optimizacija i KOmpromisno Resenje) method has been modified for intuitionistic fuzzy data in this study for supplier evaluation and selection to take into account both subjective and objective weights of criteria in the decision-making process.
Abstract: Supplier selection is a complex multiple criteria decision-making (MCDM) problem, which considers a number of alternative suppliers as well as conflicting and noncommensurable criteria. Considering the fact that it is difficult to precisely determine criteria weights and the ratings of alternatives on each criterion in real-life situations, the VIKOR (VIsekriterijumska optimizacija i KOmpromisno Resenje) method has been modified for intuitionistic fuzzy data in this study for supplier evaluation and selection. Further, we take into account both subjective and objective weights of criteria in the decision-making process, as most supplier selection approaches consider only subjective criteria weights. Finally, two supplier selection examples are provided to illustrate the proposed intuitionistic fuzzy hybrid VIKOR (IFH-VIKOR) method, and its merits are highlighted by comparing it with other relevant approaches.

Journal ArticleDOI
30 Nov 2017-Symmetry
TL;DR: In this survey, the main achievements of green cloud computing are reviewed, recent studies and developments are summarized, and environmental issues are specifically addressed.
Abstract: Cloud computing is a dynamic field of information and communication technologies (ICTs), introducing new challenges for environmental protection. Cloud computing technologies have a variety of application domains, since they offer scalability, are reliable and trustworthy, and offer high performance at relatively low cost. The cloud computing revolution is redesigning modern networking, and offering promising environmental protection prospects as well as economic and technological advantages. These technologies have the potential to improve energy efficiency and to reduce carbon footprints and (e-)waste. These features can transform cloud computing into green cloud computing. In this survey, we review the main achievements of green cloud computing. First, an overview of cloud computing is given. Then, recent studies and developments are summarized, and environmental issues are specifically addressed. Finally, future research directions and open problems regarding green cloud computing are presented. This survey is intended to serve as up-to-date guidance for research with respect to green cloud computing.

Journal ArticleDOI
22 May 2017-Symmetry
TL;DR: It was found that even control methods with a simple structure could be used for walking interactions with minimal VR sickness and a satisfactory presence was found in VR if the user was able interact using his or her own legs.
Abstract: This study analyzes walking interaction to enhance the immersion and minimize virtual reality (VR) sickness of users by conducting experiments In this study, the walking interaction is composed of three steps using input devices with a simple structure that can be easily used by anyone The first step consists of a gamepad control method, which is the most popular but has low presence The second step consists of a hand-based walking control interface, which is mainly used for interaction in VR applications The last step consists of a march-in-place detection simulator that interacts with the legs—the key body parts for walking Four experiments were conducted to determine the degree of direct expression of intention by users in the course of walking interactions that can improve immersion, presence, and prevent VR sickness in VR applications With regard to the experiments in this study, survey experiments were conducted for general users using the Wilcoxon test, a presence questionnaire, and simulator sickness questionnaire (SSQ) In addition, the technical performance of the VR scenes used in the experiment was analyzed The experimental results showed that higher immersion was achieved when interactions that felt closer to real walking were provided in VR Furthermore, it was found that even control methods with a simple structure could be used for walking interactions with minimal VR sickness Finally, a satisfactory presence was found in VR if the user was able interact using his or her own legs

Journal ArticleDOI
07 Jul 2017-Symmetry
TL;DR: The concept of a linguistic neutrosophic number (LNN), which is characterized independently by the truth, indeterminacy, and falsity linguistic variables, is proposed and the basic operational laws of LNNs are defined.
Abstract: Existing intuitionistic linguistic variables can describe the linguistic information of both the truth/membership and falsity/non-membership degrees, but it cannot represent the indeterminate and inconsistent linguistic information. To deal with the issue, this paper originally proposes the concept of a linguistic neutrosophic number (LNN), which is characterized independently by the truth, indeterminacy, and falsity linguistic variables. Then, we define the basic operational laws of LNNs and the score and accuracy functions of LNN for comparing LNNs. Next, we develop an LNN-weighted arithmetic averaging (LNNWAA) operator and an LNN-weighted geometric averaging (LNNWGA) operator to aggregate LNN information and investigate their properties. Further, a multiple attribute group decision-making method based on the proposed LNNWAA or LNNWGA operator is established under LNN environment. Finally, an illustrative example about selecting problems of investment alternatives is presented to demonstrate the application and effectiveness of the developed approach.

Journal ArticleDOI
19 Dec 2017-Symmetry
TL;DR: This paper develops the probabilistic linguistic power average (PLPA), the weighted probabilism linguistic powerAverage (WPLPA) operators, the probability linguistic power geometric (PLPG) and the weights of these new aggregation operators for fusing the probablistic linguistic term sets (PLTSs).
Abstract: As an effective aggregation tool, power average (PA) allows the input arguments being aggregated to support and reinforce each other, which provides more versatility in the information aggregation process. Under the probabilistic linguistic term environment, we deeply investigate the new power aggregation (PA) operators for fusing the probabilistic linguistic term sets (PLTSs). In this paper, we firstly develop the probabilistic linguistic power average (PLPA), the weighted probabilistic linguistic power average (WPLPA) operators, the probabilistic linguistic power geometric (PLPG) and the weighted probabilistic linguistic power geometric (WPLPG) operators. At the same time, we carefully analyze the properties of these new aggregation operators. With the aid of the WPLPA and WPLPG operators, we further design the approaches for the application of multi-criteria group decision-making (MCGDM) with PLTSs. Finally, we use an illustrated example to expound our proposed methods and verify their performances.

Journal ArticleDOI
10 Apr 2017-Symmetry
TL;DR: An efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN) to detect ears from 2D profile images in natural images automatically, using an ear region filtering approach to extract the correct ear region and eliminate the false positives automatically.
Abstract: Ear detection is an important step in ear recognition approaches. Most existing ear detection techniques are based on manually designing features or shallow learning algorithms. However, researchers found that the pose variation, occlusion, and imaging conditions provide a great challenge to the traditional ear detection methods under uncontrolled conditions. This paper proposes an efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN) to detect ears from 2D profile images in natural images automatically. Firstly, three regions of different scales are detected to infer the information about the ear location context within the image. Then an ear region filtering approach is proposed to extract the correct ear region and eliminate the false positives automatically. In an experiment with a test set of 200 web images (with variable photographic conditions), 98% of ears were accurately detected. Experiments were likewise conducted on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2) and University of Beira Interior Ear dataset (UBEAR), which contain large occlusion, scale, and pose variations. Detection rates of 100% and 98.22%, respectively, demonstrate the effectiveness of the proposed approach.

Journal ArticleDOI
18 Apr 2017-Symmetry
TL;DR: Overall, the empirical evidence across vertebrate species points to the conclusion that stronger lateralization is advantageous in a wide range of contexts.
Abstract: Research on a growing number of vertebrate species has shown that the left and right sides of the brain process information in different ways and that lateralized brain function is expressed in both specific and broad aspects of behaviour. This paper reviews the available evidence relating strength of lateralization to behavioural/cognitive performance. It begins by considering the relationship between limb preference and behaviour in humans and primates from the perspectives of direction and strength of lateralization. In birds, eye preference is used as a reflection of brain asymmetry and the strength of this asymmetry is associated with behaviour important for survival (e.g., visual discrimination of food from non-food and performance of two tasks in parallel). The same applies to studies on aquatic species, mainly fish but also tadpoles, in which strength of lateralization has been assessed as eye preferences or turning biases. Overall, the empirical evidence across vertebrate species points to the conclusion that stronger lateralization is advantageous in a wide range of contexts. Brief discussion of interhemispheric communication follows together with discussion of experiments that examined the effects of sectioning pathways connecting the left and right sides of the brain, or of preventing the development of these left-right connections. The conclusion reached is that degree of functional lateralization affects behaviour in quite similar ways across vertebrate species. Although the direction of lateralization is also important, in many situations strength of lateralization matters more. Finally, possible interactions between asymmetry in different sensory modalities is considered.

Journal ArticleDOI
01 Nov 2017-Symmetry
TL;DR: A new denoising algorithm and feature extraction algorithm that combine a new kind of permutation entropy (NPE) and variational mode decomposition (VMD) are put forward and the effectiveness of proposed algorithms is validated using the numerical simulation signal and the different kinds of SN signal.
Abstract: A new denoising algorithm and feature extraction algorithm that combine a new kind of permutation entropy (NPE) and variational mode decomposition (VMD) are put forward in this paper. VMD is a new self-adaptive signal processing algorithm, which is more robust to sampling and noise, and also can overcome the problem of mode mixing in empirical mode decomposition (EMD) and ensemble EMD (EEMD). Permutation entropy (PE), as a nonlinear dynamics parameter, is a powerful tool that can describe the complexity of a time series. NPE, a new version of PE, is interpreted as distance to white noise, which shows a reverse trend to PE and has better stability than PE. In this paper, three kinds of ship-radiated noise (SN) signal are decomposed by VMD algorithm, and a series of intrinsic mode functions (IMF) are obtained. The NPEs of all the IMFs are calculated, the noise IMFs are screened out according to the value of NPE, and the process of denoising can be realized by reconstructing the rest of IMFs. Then the reconstructed SN signal is decomposed by VMD algorithm again, and one IMF containing the most dominant information is chosen to represent the original SN signal. Finally, NPE of the chosen IMF is calculated as a new complexity feature, which constitutes the input of the support vector machine (SVM) for pattern recognition of SN. Compared with the existing denoising algorithms and feature extraction algorithms, the effectiveness of proposed algorithms is validated using the numerical simulation signal and the different kinds of SN signal.

Journal ArticleDOI
10 Nov 2017-Symmetry
TL;DR: This work introduces notions of soft rough m-polar fuzzy sets and m- polar fuzzy soft rough sets as novel hybrid models for soft computing, and investigates some of their fundamental properties.
Abstract: We introduce notions of soft rough m-polar fuzzy sets and m-polar fuzzy soft rough sets as novel hybrid models for soft computing, and investigate some of their fundamental properties. We discuss the relationship between m-polar fuzzy soft rough approximation operators and crisp soft rough approximation operators. We also present applications of m-polar fuzzy soft rough sets to decision-making.

Journal ArticleDOI
08 Aug 2017-Symmetry
TL;DR: An extended TOPSIS method combined with linguistic neutrosophic numbers (LNNs) is presented, considering that there are several qualitative risk factors of mining investment projects and a weight model based on maximizing deviation to obtain the criteria weight vector objectively is offered.
Abstract: The investment in and development of mineral resources play an important role in the national economy. A good mining project investment can improve economic efficiency and increase social wealth. Faced with the complexity and uncertainty of a mine’s circumstances, there is great significance in evaluating investment risk scientifically. In order to solve practical engineering problems, this paper presents an extended TOPSIS method combined with linguistic neutrosophic numbers (LNNs). Firstly, considering that there are several qualitative risk factors of mining investment projects, the paper describes evaluation information by means of LNNs. The advantage of LNNs is that major original information is reserved with linguistic truth, indeterminacy, and false membership degrees. After that, a number of distance measures are defined. Furthermore, a common status is that the decision makers can’t determine the importance degrees of every risk factor directly for a few reasons. With respect to this situation, the paper offers a weight model based on maximizing deviation to obtain the criteria weight vector objectively. Subsequently, a decision-making approach through improving classical TOPSIS with LNNs comes into being. Next, a case study of the proposed method applied in metallic mining projects investment is given. Some comparison analysis is also submitted. At last, the discussions and conclusions are finished.

Journal ArticleDOI
19 Oct 2017-Symmetry
TL;DR: This study presents a retinal vessel detection approach using shearlet transform and indeterminacy filtering, and illustrates the efficiency and accuracy of the proposed method.
Abstract: A fundus image is an effective tool for ophthalmologists studying eye diseases. Retinal vessel detection is a significant task in the identification of retinal disease regions. This study presents a retinal vessel detection approach using shearlet transform and indeterminacy filtering. The fundus image’s green channel is mapped in the neutrosophic domain via shearlet transform. The neutrosophic domain images are then filtered with an indeterminacy filter to reduce the indeterminacy information. A neural network classifier is employed to identify the pixels whose inputs are the features in neutrosophic images. The proposed approach is tested on two datasets, and a receiver operating characteristic curve and the area under the curve are employed to evaluate experimental results quantitatively. The area under the curve values are 0.9476 and 0.9469 for each dataset respectively, and 0.9439 for both datasets. The comparison with the other algorithms also illustrates that the proposed method yields the highest evaluation measurement value and demonstrates the efficiency and accuracy of the proposed method.

Journal ArticleDOI
02 Sep 2017-Symmetry
TL;DR: In this article, a new straightforward k-NN approach is proposed based on neutrosophic c-means (NCM) algorithm, which calculates the NS memberships based on a supervised NCM algorithm, and a final belonging membership U is calculated from the NS triples as U = T + I − F.
Abstract: k-nearest neighbors (k-NN), which is known to be a simple and efficient approach, is a non-parametric supervised classifier. It aims to determine the class label of an unknown sample by its k-nearest neighbors that are stored in a training set. The k-nearest neighbors are determined based on some distance functions. Although k-NN produces successful results, there have been some extensions for improving its precision. The neutrosophic set (NS) defines three memberships namely T, I and F. T, I, and F shows the truth membership degree, the false membership degree, and the indeterminacy membership degree, respectively. In this paper, the NS memberships are adopted to improve the classification performance of the k-NN classifier. A new straightforward k-NN approach is proposed based on NS theory. It calculates the NS memberships based on a supervised neutrosophic c-means (NCM) algorithm. A final belonging membership U is calculated from the NS triples as U = T + I − F . A similar final voting scheme as given in fuzzy k-NN is considered for class label determination. Extensive experiments are conducted to evaluate the proposed method’s performance. To this end, several toy and real-world datasets are used. We further compare the proposed method with k-NN, fuzzy k-NN, and two weighted k-NN schemes. The results are encouraging and the improvement is obvious.

Journal ArticleDOI
17 May 2017-Symmetry
TL;DR: This paper explores an automatic radar waveform recognition system to detect, track and locate the low probability of intercept (LPI) radars, and proposes several key features for the classifier based on Choi–Williams time-frequency distribution (CWD).
Abstract: For passive radar detection system, radar waveform recognition is an important research area. In this paper, we explore an automatic radar waveform recognition system to detect, track and locate the low probability of intercept (LPI) radars. The system can classify (but not identify) 12 kinds of signals, including binary phase shift keying (BPSK) (barker codes modulated), linear frequency modulation (LFM), Costas codes, Frank code, P1-P4 codesand T1-T4 codeswith a low signal-to-noise ratio (SNR). It is one of the most extensive classification systems in the open articles. A hybrid classifier is proposed, which includes two relatively independent subsidiary networks, convolutional neural network (CNN) and Elman neural network (ENN). We determine the parameters of the architecture to make networks more effectively. Specifically, we focus on how the networks are designed, what the best set of features for classification is and what the best classified strategy is. Especially, we propose several key features for the classifier based on Choi–Williams time-frequency distribution (CWD). Finally, the recognition system is simulated by experimental data. The experiments show the overall successful recognition ratio of 94.5% at an SNR of −2 dB.

Journal ArticleDOI
18 Jul 2017-Symmetry
TL;DR: A cosine measures-based multiple attribute decision- making method under a neutrosophic cubic environment in which the ranking order of alternatives and the best option can be obtained, corresponding to the cosine measure values in the decision-making process.
Abstract: The neutrosophic cubic set can contain much more information to express its interval neutrosophic numbers and single-valued neutrosophic numbers simultaneously in indeterminate environments. Hence, it is a usual tool for expressing much more information in complex decision-making problems. Unfortunately, there has been no research on similarity measures of neutrosophic cubic sets so far. Since the similarity measure is an important mathematical tool in decision-making problems, this paper proposes three cosine measures between neutrosophic cubic sets based on the included angle cosine of two vectors, distance, and cosine functions, and investigates their properties. Then, we develop a cosine measures-based multiple attribute decision-making method under a neutrosophic cubic environment in which, from the cosine measure between each alternative (each evaluated neutrosophic cubic set) and the ideal alternative (the ideal neutrosophic cubic set), the ranking order of alternatives and the best option can be obtained, corresponding to the cosine measure values in the decision-making process. Finally, an illustrative example about the selection problem of investment alternatives is provided to illustrate the application and feasibility of the developed decision-making method.

Journal ArticleDOI
14 Sep 2017-Symmetry
TL;DR: It is demonstrated that the blockchain technology can effectively solve the safety of expansion of machines in the production process and the communication data between the machines cannot be tampered with.
Abstract: As the core of intelligent manufacturing, cyber-physical systems (CPS) have serious security issues, especially for the communication security of their terminal machine-to-machine (M2M) communications. In this paper, blockchain technology is introduced to address such a security problem of communications between different types of machines in the CPS. According to the principles of blockchain technology, we designed a blockchain for secure M2M communications. As a communication system, M2M consists of public network areas, device areas, and private areas, and we designed a sophisticated blockchain structure between the public area and private area. For validating our design, we took cotton spinning production as a case study to demonstrate our solution to M2M communication problems under the CPS framework. We have demonstrated that the blockchain technology can effectively solve the safety of expansion of machines in the production process and the communication data between the machines cannot be tampered with.

Journal ArticleDOI
30 Sep 2017-Symmetry
TL;DR: The use of membranes have been pointed out as a promising methodology for scale-up enantiomeric separation due to the low energy consumption, continuous operability, variety of materials and supports, simplicity, eco-friendly and the possibility to be integrated into other separation processes.
Abstract: Given the importance of chirality in the biological response, regulators, industries and researchers require chiral compounds in their enantiomeric pure form. Therefore, the approach to separate enantiomers in preparative scale needs to be fast, easy to operate, low cost and allow obtaining the enantiomers at high level of optical purity. A variety of methodologies to separate enantiomers in preparative scale is described, but most of them are expensive or with restricted applicability. However, the use of membranes have been pointed out as a promising methodology for scale-up enantiomeric separation due to the low energy consumption, continuous operability, variety of materials and supports, simplicity, eco-friendly and the possibility to be integrated into other separation processes. Different types of membranes (solid and liquid) have been developed and may provide applicability in multi-milligram and industrial scales. In this brief overview, the different types and chemical nature of membranes are described, showing their advantages and drawbacks. Recent applications of enantiomeric separations of pharmaceuticals, amines and amino acids were reported.

Journal ArticleDOI
27 Oct 2017-Symmetry
TL;DR: The main contribution of this paper is the implementation of a novel methodology, which allows to assess a large variety of assets where data are heterogeneous, and permits to avoid the appraiser’s subjectivity and the well-known disadvantages of some alternative methods.
Abstract: Zadeh’s fuzzy set theory for imprecise or vague data has been followed by other successful models, inclusive of Molodtsov’s soft set theory and hybrid models like fuzzy soft sets. Their success has been backed up by applications to many branches like engineering, medicine, or finance. In continuation of this effort, the purpose of this paper is to put forward a versatile methodology for the valuation of goods, particularly the assessment of real state properties. In order to reach this target, we develop the concept of (partial) valuation fuzzy soft set and introduce the novel problem of data filling in partial valuation fuzzy soft sets. The use of fuzzy soft sets allows us to quantify the qualitative attributes involved in an assessment context. As a result, we illustrate the effectiveness and validity of our valuation methodology with a real case study that uses data from the Spanish real estate market. The main contribution of this paper is the implementation of a novel methodology, which allows us to assess a large variety of assets where data are heterogeneous. Our technique permits to avoid the appraiser’s subjectivity (exhibited by practitioners in housing valuation) and the well-known disadvantages of some alternative methods (such as linear multiple regression).

Journal ArticleDOI
04 Jul 2017-Symmetry
TL;DR: A newly extended weighted aggregated sum product assessment (WASPAS) technique, which involves novel three procedures, is utilized to handle MCDM issues under INSs environment to reveal that the extended WASPAS technique can well match the reality and appropriately handle the solar-wind power station location selection problem.
Abstract: As one of the promising renewable energy resources, solar-wind energy has increasingly become a regional engine in leading the economy and raising competitiveness. Selecting a solar-wind power station location can contribute to efficient utilization of resource and instruct long-term development of socio-economy. Since the selection procedure consists of several location alternatives and many influential criteria factors, the selection can be recognized as a multiple criteria decision-making (MCDM) problem. To better express multiple uncertainty information during the selection procedure, fuzzy set theory is introduced to manage that issue. Interval neutrosophic sets (INSs), which are characterized by truth-membership, indeterminacy-membership and falsity-membership functions in the interval numbers (INs) form, are feasible in modeling more uncertainty of reality. In this paper, a newly extended weighted aggregated sum product assessment (WASPAS) technique, which involves novel three procedures, is utilized to handle MCDM issues under INSs environment. Some modifications are conducted in the extended method comparing with the classical WASPAS method. The most obvious improvement of the extended method relies on that it can generate more realistic criteria weight information by an objective and subjective integrated criteria weight determination method. A case study concerning solar-wind power station location selection is implemented to demonstrate the applicability and rationality of the proposed method in practice. Its validity and feasibility are further verified by a sensitivity analysis and a comparative analysis. These analyses effectively reveal that the extended WASPAS technique can well match the reality and appropriately handle the solar-wind power station location selection problem.

Journal ArticleDOI
14 Nov 2017-Symmetry
TL;DR: In this paper, the neutrosophic duplet sets, weak duplet set, and weak neutro-phonetic duplet semi-group were investigated. And the concept of neutrosaphic triplets in BCI-algebras was discussed.
Abstract: The notions of the neutrosophic triplet and neutrosophic duplet were introduced by Florentin Smarandache. From the existing research results, the neutrosophic triplets and neutrosophic duplets are completely different from the classical algebra structures. In this paper, we further study neutrosophic duplet sets, neutrosophic duplet semi-groups, and cancellable neutrosophic triplet groups. First, some new properties of neutrosophic duplet semi-groups are funded, and the following important result is proven: there is no finite neutrosophic duplet semi-group. Second, the new concepts of weak neutrosophic duplet, weak neutrosophic duplet set, and weak neutrosophic duplet semi-group are introduced, some examples are given by using the mathematical software MATLAB (MathWorks, Inc., Natick, MA, USA), and the characterizations of cancellable weak neutrosophic duplet semi-groups are established. Third, the cancellable neutrosophic triplet groups are investigated, and the following important result is proven: the concept of cancellable neutrosophic triplet group and group coincide. Finally, the neutrosophic triplets and weak neutrosophic duplets in BCI-algebras are discussed.