scispace - formally typeset
Journal ArticleDOI

AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery

TLDR
In this article, a 7.2V, 1.25 Ah sealed lithium-ion rechargeable battery has been studied for estimating its state-of-charge (SOC) by AC impedance.
Abstract
A 7.2V, 1.25 Ah sealed lithium-ion rechargeable battery has been studied for estimating its state-of-charge (SOC) by AC impedance. The dispersion of impedance data over the frequency range between 100 kHz and 25 mHz comprises an inductive part and two capacitive parts. As the inductive behaviour of the battery is attributed to the porous nature of the electrodes, only the capacitive components have been examined. The data obtained at several SOC values of the battery have been analyzed by a non-linear least-squares fitting procedure. The presence of two depressed semicircles in the capacitive region of the Nyquist plots necessitated the use of an electrical equivalent circuit containing constant phase elements instead of capacitances. The impedance parameters corresponding to the low-frequency semicircle have been found useful for predicting the SOC of the battery, mainly because the magnitude of these parameters and their variations are more significant than those of the high-frequency semicircle. The frequency maximum (f(max)) of the semicircle, the resistive component (Z') corresponding to f(max), the phase angle (phi) in the 5.0 Hz-0.1 Hz frequency range, the equivalent series resistance (R-s) and the equivalent series capacitance (C-s) have been identified as suitable parameters for predicting the SOC values of the lithium-ion battery.

read more

Citations
More filters
Journal ArticleDOI

Ageing mechanisms in lithium-ion batteries

TL;DR: In this article, the mechanisms of lithium-ion battery ageing are reviewed and evaluated, and the most promising candidate as the power source for (hybrid) electric vehicles and stationary energy storage.
Journal ArticleDOI

Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles

TL;DR: In this paper, the methods for monitoring the battery state of charge, capacity, impedance parameters, available power, state of health, and remaining useful life are reviewed with the focus on elaboration of their strengths and weaknesses for the use in on-line BMS applications.
Journal ArticleDOI

Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application

TL;DR: In this paper, a 40 Ah lithium-ion cell with nickel manganese cobalt oxide (NMC) cathode material was used to investigate the battery impedance and its dependence on the battery state-of-charge (SoC), temperature, current and previous history.
Journal ArticleDOI

A review of state-of-charge indication of batteries by means of a.c. impedance measurements

TL;DR: In this article, a review consolidates the literature on the prediction of the state-of-charge (SoC) of batteries by means of a.c. impedance measurements.
Journal ArticleDOI

Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries

TL;DR: In this paper, a physically sound circuit model based on the characteristics of the battery cell system is presented. And the relationship between the obtained resistances of the bulk (Rb), charge transfer reaction (Rct), interface layer (RSEI), diffusion process (W) and battery characteristics, such as the state of charge (SOC), temperature, and state of health (SOH), is introduced.
Related Papers (5)