scispace - formally typeset
Journal ArticleDOI

Advances in Mesoporous Molecular Sieve MCM-41

TLDR
A comprehensive overview of recent advances in the field of MCM-41 molecular sieves is presented in this article, with a focus on the chemistry of surfactant/silicate solutions.
Abstract
The discovery of mesoporous molecular sieves, MCM-41, which possesses a regular hexagonal array of uniform pore openings, aroused a worldwide resurgence in this field. This is not only because it has brought about a series of novel mesoporous materials with various compositions which may find applications in catalysis, adsorption, and guest-host chemistry, but also it has opened a new avenue for creating zeotype materials. This paper presents a comprehensive overview of recent advances in the field of MCM-41. Beginning with the chemistry of surfactant/silicate solutions, progresses made in design and synthesis, characterization, and physicochemical property evaluation of MCM-41 are enumerated. Proposed formation mechanisms are presented, discussed, and identified. Potential applications are reviewed and projected. More than 100 references are cited.

read more

Citations
More filters
Journal ArticleDOI

From Microporous to Mesoporous Molecular-Sieve Materials and Their Use in Catalysis

TL;DR: Corma et al. as mentioned in this paper used the Dupont Award on new materials (1995), and the Spanish National Award “Leonardo Torres Quevedo” on Technology Research (1996) on technology research (1996), to recognize the performance of zeolites as catalysts for oil refining and petrochemistry.
Journal ArticleDOI

Silica-based mesoporous organic-inorganic hybrid materials.

TL;DR: An overview of the preparation, properties, and potential applications of mesoporous organic-inorganic hybrid materials in the areas of catalysis, sorption, chromatography, and the construction of systems for controlled release of active compounds, as well as molecular switches, are given.
Journal ArticleDOI

Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis

TL;DR: In this article, the pore size distributions derived from adsorption isotherms of micro- and mesoporous materials are identified and discussed based on new results and examples reported in the recent literature.
Journal ArticleDOI

A Review: Fundamental Aspects of Silicate Mesoporous Materials

TL;DR: Silicate mesoporous materials have received widespread interest because of their potential applications as supports for catalysis, separation, selective adsorption, novel functional materials, and use as hosts to confine guest molecules, due to their extremely high surface areas combined with large and uniform pore sizes.
References
More filters
Journal ArticleDOI

Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism

TL;DR: In this paper, the synthesis of mesoporous inorganic solids from calcination of aluminosilicate gels in the presence of surfactants is described, in which the silicate material forms inorganic walls between ordered surfactant micelles.
Journal ArticleDOI

A neutral templating route to mesoporous molecular sieves.

TL;DR: A neutral templating route for preparing mesoporous molecular sieves is demonstrated based on hydrogen-bonding interactions and self-assembly between neutral primary amine micelles (S�) and neutral inorganic precursors (l�).
Journal ArticleDOI

Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds

TL;DR: The use of the templating approach to synthesize mesoporous silica-based molecular sieves partly substituted with titanium—large-pore analogues of titanium silicalite find that these materials show selective catalytic activity towards the oxidation of 2,6-ditert-butyl phenol to the corresponding quinone and the conversion of benzene to phenol.
Journal ArticleDOI

Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures

TL;DR: Model Q230 proposed by Mariani and his co-workers satisfactorily fits the x-ray data collected on the cubic mesostructure material and suggests that the silicate polymer forms a unique infinite silicate sheet sitting on the gyroid minimal surface and separating the surfactant molecules into two disconnected volumes.
Journal ArticleDOI

Cooperative organization of inorganic-surfactant and biomimetic assemblies

TL;DR: A model that makes use of the cooperative organization of inorganic and organic molecular species into three dimensionally structured arrays is generalized for the synthesis of nanocomposite materials to separate the effects of self-assembly from the kinetics of silicate polymerization.
Related Papers (5)