scispace - formally typeset
Open AccessPosted Content

Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization

Reads0
Chats0
TLDR
This paper presents a simple yet effective approach that for the first time enables arbitrary style transfer in real-time, comparable to the fastest existing approach, without the restriction to a pre-defined set of styles.
Abstract
Gatys et al. recently introduced a neural algorithm that renders a content image in the style of another image, achieving so-called style transfer. However, their framework requires a slow iterative optimization process, which limits its practical application. Fast approximations with feed-forward neural networks have been proposed to speed up neural style transfer. Unfortunately, the speed improvement comes at a cost: the network is usually tied to a fixed set of styles and cannot adapt to arbitrary new styles. In this paper, we present a simple yet effective approach that for the first time enables arbitrary style transfer in real-time. At the heart of our method is a novel adaptive instance normalization (AdaIN) layer that aligns the mean and variance of the content features with those of the style features. Our method achieves speed comparable to the fastest existing approach, without the restriction to a pre-defined set of styles. In addition, our approach allows flexible user controls such as content-style trade-off, style interpolation, color & spatial controls, all using a single feed-forward neural network.

read more

Citations
More filters
Posted Content

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness

TL;DR: It is shown that ImageNet-trained CNNs are strongly biased towards recognising textures rather than shapes, which is in stark contrast to human behavioural evidence and reveals fundamentally different classification strategies.
Posted Content

Multimodal Unsupervised Image-to-Image Translation

TL;DR: A Multimodal Unsupervised Image-to-image Translation (MUNIT) framework that assumes that the image representation can be decomposed into a content code that is domain-invariant, and a style code that captures domain-specific properties.
Posted Content

FiLM: Visual Reasoning with a General Conditioning Layer

TL;DR: Feature-wise linear modulation (FiLM) as mentioned in this paper is a general-purpose conditioning method for neural networks, which can influence neural network computation via a simple, feature-wise affine transformation based on conditioning information.
Journal ArticleDOI

Deep learning classifiers for hyperspectral imaging: A review

TL;DR: A comprehensive review of the current-state-of-the-art in DL for HSI classification, analyzing the strengths and weaknesses of the most widely used classifiers in the literature is provided, providing an exhaustive comparison of the discussed techniques.
Posted Content

The Contextual Loss for Image Transformation with Non-Aligned Data

TL;DR: This work presents an alternative loss function that does not require alignment, thus providing an effective and simple solution for a new space of problems.
References
More filters
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

Generative Adversarial Nets

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Posted Content

Adam: A Method for Stochastic Optimization

TL;DR: In this article, the adaptive estimates of lower-order moments are used for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimate of lowerorder moments.
Posted Content

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Batch Normalization as mentioned in this paper normalizes layer inputs for each training mini-batch to reduce the internal covariate shift in deep neural networks, and achieves state-of-the-art performance on ImageNet.
Posted Content

Image-to-Image Translation with Conditional Adversarial Networks

TL;DR: Conditional Adversarial Network (CA) as discussed by the authors is a general-purpose solution to image-to-image translation problems, which can be used to synthesize photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Related Papers (5)