scispace - formally typeset
Journal ArticleDOI

Bidirectional reflectance spectroscopy: 1. Theory

Bruce Hapke
- 10 Apr 1981 - 
- Vol. 86, pp 3039-3054
Reads0
Chats0
TLDR
In this article, an approximate analytic solution for the radiative transfer equation describing particulate surface light scattering, taking into account multiple scattering and mutual shadowing, was derived for the interpretation of reflectance spectroscopy of laboratory surfaces and the photometry of solar system objects.
Abstract
An approximate analytic solution is derived for the radiative transfer equation describing particulate surface light scattering, taking into account multiple scattering and mutual shadowing. Analytical expressions for the following quantities are found: bidirectional reflectance, radiance coefficient and factor, the normal, Bond, hemispherical, and physical albedos, integral phase function and phase integral, and limb-darkening profile. Scattering functions for mixtures can be calculated, as well as corrections for comparisons of experimental transmission or reflection spectra with observational planetary spectra. The theory should be useful for the interpretation of reflectance spectroscopy of laboratory surfaces and the photometry of solar system objects.

read more

Citations
More filters
Journal ArticleDOI

Vertex component analysis: a fast algorithm to unmix hyperspectral data

TL;DR: A new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA), which competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.
Journal ArticleDOI

Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

TL;DR: This paper presents an overview of un Mixing methods from the time of Keshava and Mustard's unmixing tutorial to the present, including Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixed algorithms.
Book

Theory of Reflectance and Emittance Spectroscopy

TL;DR: In this article, the authors present a review of vector calculus and functions of a complex variable and Fraunhoffer diffraction by a circular hole, and a miscellany of bidirectional reflectances and related quantities.
Journal Article

Spectral unmixing

TL;DR: The outputs of spectral unmixing, endmember, and abundance estimates are important for identifying the material composition of mixtures and the applicability of models and techniques is highly dependent on the variety of circumstances and factors that give rise to mixed pixels.
References
More filters
Journal ArticleDOI

Light Scattering by Small Particles

H. C. Van de Hulst, +1 more
- 18 Jul 1957 - 
TL;DR: Light scattering by small particles as mentioned in this paper, Light scattering by Small Particle Scattering (LPS), Light scattering with small particles (LSC), Light Scattering by Small Parts (LSP),
Journal ArticleDOI

Light scattering in planetary atmospheres

TL;DR: In this paper, a review of scattering theory required for analysis of light reflected by planetary atmospheres is presented, which demonstrates the dependence of single-scattered radiation on the physical properties of the scatterers.
Journal ArticleDOI

New contributions to the optics of intensely light-scattering materials.

TL;DR: In this paper, the Gurevic and Judd formulas were derived from the Kubelka-Munk differential equations, and they are exact under the same conditions as in this paper, that is, when the material is perfectly dull and when the light, is perfectly diffused or if it is parallel and hits the specimen under an angle of 60° from normal.
Journal ArticleDOI

Directional Reflectance and Emissivity of an Opaque Surface

Fred E. Nicodemus
- 01 Jul 1965 - 
TL;DR: In this article, the authors present concepts, terminology, and symbols for specifying and relating directional variations in reflectance and emissivity of an opaque surface element. But their relationship to more familiar concepts, including those of perfectly diffuse and specular reflectance, is not discussed.