scispace - formally typeset
Open AccessDissertation

Code profiling and optimization in transactional memory systems

Reads0
Chats0
TLDR
A system in which code profiling in a simulated hardware implementation of Transactional Memory is used to characterize a transactional application, which forms the basis for the automated tuning of the underlying speculative system for the efficient execution of that particular application is proposed.
Abstract
Code Profiling and Optimization in Transactional Memory Systems Transactional Memory has shown itself to be a promising paradigm for the implementation of shared-memory concurrent applications that eschew a lock-based model of data synchronization. Rather than conditioning exclusive access on the value of a lock that is shared across concurrent threads, Transactional Memory attempts to execute critical sections optimistically, rolling back the modifications in the event of a data access conflict. However, while the lock-based approach has acquired a significant body of debugging, profiling and automated optimization tools (as one of the oldest and most researched synchronization techniques), the field of Transactional Memory is still comparably recent, and programmers are usually tasked with an unguided manual tuning of their transactional applications when facing efficiency problems. We propose a system in which code profiling in a simulated hardware implementation of Transactional Memory is used to characterize a transactional application, which forms the basis for the automated tuning of the underlying speculative system for the efficient execution of that particular application. We also propose a profile-guided approach to the scheduling of threads in a software-based implementation of Transactional Memory, using collected data to predict the likelihood of conflicts and determine what thread to schedule based on this prediction. We present the results achieved under both designs.

read more

References
More filters
Book

Computer Architecture: A Quantitative Approach

TL;DR: This best-selling title, considered for over a decade to be essential reading for every serious student and practitioner of computer design, has been updated throughout to address the most important trends facing computer designers today.
Proceedings ArticleDOI

The SPLASH-2 programs: characterization and methodological considerations

TL;DR: This paper quantitatively characterize the SPLASH-2 programs in terms of fundamental properties and architectural interactions that are important to understand them well, including the computational load balance, communication to computation ratio and traffic needs, important working set sizes, and issues related to spatial locality.
Proceedings ArticleDOI

The PARSEC benchmark suite: characterization and architectural implications

TL;DR: This paper presents and characterizes the Princeton Application Repository for Shared-Memory Computers (PARSEC), a benchmark suite for studies of Chip-Multiprocessors (CMPs), and shows that the benchmark suite covers a wide spectrum of working sets, locality, data sharing, synchronization and off-chip traffic.
Journal ArticleDOI

Efficiently computing static single assignment form and the control dependence graph

TL;DR: In this article, the authors present new algorithms that efficiently compute static single assignment forms and control dependence graphs for arbitrary control flow graphs using the concept of {\em dominance frontiers} and give analytical and experimental evidence that these data structures are usually linear in the size of the original program.
Journal ArticleDOI

Simics: A full system simulation platform

TL;DR: Simics is a platform for full system simulation that can run actual firmware and completely unmodified kernel and driver code, and it provides both functional accuracy for running commercial workloads and sufficient timing accuracy to interface to detailed hardware models.
Related Papers (5)