scispace - formally typeset
Open AccessJournal ArticleDOI

Computational and statistical tradeoffs via convex relaxation

Reads0
Chats0
TLDR
This paper defines a notion of “algorithmic weakening,” in which a hierarchy of algorithms is ordered by both computational efficiency and statistical efficiency, allowing the growing strength of the data at scale to be traded off against the need for sophisticated processing.
Abstract
Modern massive datasets create a fundamental problem at the intersection of the computational and statistical sciences: how to provide guarantees on the quality of statistical inference given bounds on computational resources, such as time or space. Our approach to this problem is to define a notion of “algorithmic weakening,” in which a hierarchy of algorithms is ordered by both computational efficiency and statistical efficiency, allowing the growing strength of the data at scale to be traded off against the need for sophisticated processing. We illustrate this approach in the setting of denoising problems, using convex relaxation as the core inferential tool. Hierarchies of convex relaxations have been widely used in theoretical computer science to yield tractable approximation algorithms to many computationally intractable tasks. In the current paper, we show how to endow such hierarchies with a statistical characterization and thereby obtain concrete tradeoffs relating algorithmic runtime to amount of data.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Machine learning: Trends, perspectives, and prospects

TL;DR: The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing.
Journal ArticleDOI

A Survey of Research on Cloud Robotics and Automation

TL;DR: This survey considers robots and automation systems that rely on data or code from a network to support their operation, i.e., where not all sensing, computation, and memory is integrated into a standalone system.
Journal ArticleDOI

HoloClean: holistic data repairs with probabilistic inference

TL;DR: A series of optimizations are introduced which ensure that inference over HoloClean's probabilistic model scales to instances with millions of tuples, and yields an average F1 improvement of more than 2× against state-of-the-art methods.
Journal ArticleDOI

Convex Optimization for Big Data: Scalable, randomized, and parallel algorithms for big data analytics

TL;DR: A recent review of convex optimization algorithms for big data can be found in this article, which aim to reduce the computational, storage, and communications bottlenecks of big data.
References
More filters
Book

Computers and Intractability: A Guide to the Theory of NP-Completeness

TL;DR: The second edition of a quarterly column as discussed by the authors provides a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman & Co., San Francisco, 1979.
Book

Convex Optimization

TL;DR: In this article, the focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them, and a comprehensive introduction to the subject is given. But the focus of this book is not on the optimization problem itself, but on the problem of finding the appropriate technique to solve it.
Book

Compressed sensing

TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Journal ArticleDOI

Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information

TL;DR: In this paper, the authors considered the model problem of reconstructing an object from incomplete frequency samples and showed that with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the lscr/sub 1/ minimization problem.