scispace - formally typeset
Proceedings ArticleDOI

Contrast transfer function with sinusoidal illumination for super resolved phase imaging

Reads0
Chats0
TLDR
In this paper, a propagation based super resolution phase imaging technique using Contrast Transfer Function (CTF) and structured illumination is proposed to enhance the spatial resolution of the retrieved phase images.
Abstract
Quantitative phase imaging (QPI) has emerged as a powerful computational tool that enables imaging unla- belled specimens with high contrast. It finds applications in microscopy, refractive index mapping , biomedical imaging and surface measurement. Several techniques including interferometry, holography, iterative methods and Transport of Intensity Equation have been developed over the years for QPI. However, the spatial resolution of the retrieved phase images are limited by the diffraction limit of the imaging system. Prior work on Super resolution phase imaging has been primarily focused on holography based techniques which require illumination sources with high coherence , phase unwrapping and high experimental stability. In this work, we propose a propagation based super resolution phase imaging technique using Contrast Transfer Function(CTF) and structured illumination. An enhancement in resolution by two folds is demonstrated using numerical results.

read more

References
More filters
Journal ArticleDOI

Introduction to Fourier Optics

Joseph W. Goodman, +1 more
- 01 Apr 1969 - 
TL;DR: The second edition of this respected text considerably expands the original and reflects the tremendous advances made in the discipline since 1968 as discussed by the authors, with a special emphasis on applications to diffraction, imaging, optical data processing, and holography.
Journal ArticleDOI

Phase retrieval algorithms: a comparison.

TL;DR: Iterative algorithms for phase retrieval from intensity data are compared to gradient search methods and it is shown that both the error-reduction algorithm for the problem of a single intensity measurement and the Gerchberg-Saxton algorithm forThe problem of two intensity measurements converge.
Journal ArticleDOI

Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.

TL;DR: Lateral resolution that exceeds the classical diffraction limit by a factor of two is achieved by using spatially structured illumination in a wide‐field fluorescence microscope with strikingly increased clarity compared to both conventional and confocal microscopes.
Journal ArticleDOI

Reconstruction of an object from the modulus of its Fourier transform.

TL;DR: A digital method for solving the phase-retrieval problem of optical-coherence theory: the reconstruction of a general object from the modulus of its Fourier transform, which should be useful for obtaining high-resolution imagery from interferometer data.
Journal ArticleDOI

Deterministic phase retrieval: a Green’s function solution

TL;DR: In this article, the propagation of phase and irradiance are derived, and a Green's function solution for the phase in terms of irradiance and perimeter phase values is given A measurement scheme is discussed, and the results of a numerical simulation are given Both circular and slit pupils are considered.
Related Papers (5)