scispace - formally typeset
Open AccessPosted Content

Coupling rare event algorithms with data-based learned committor functions using the analogue Markov chain

TLDR
In this paper, a data-based learning of approximate committor functions is proposed for the adaptive multilevel splitting (AMS) algorithm, which is suitable for far-from-equilibrium dynamics.
Abstract
Rare events play a crucial role in many physics, chemistry, and biology phenomena, when they change the structure of the system, for instance in the case of multistability, or when they have a huge impact. Rare event algorithms have been devised to simulate them efficiently, avoiding the computation of long periods of typical fluctuations. We consider here the family of splitting or cloning algorithms, which are versatile and specifically suited for far-from-equilibrium dynamics. To be efficient, these algorithms need to use a smart score function during the selection stage. Committor functions are the optimal score functions. In this work we propose a new approach, based on the analogue Markov chain, for a data-based learning of approximate committor functions. We demonstrate that such learned committor functions are extremely efficient score functions when used with the Adaptive Multilevel Splitting algorithm. We illustrate our approach for a gradient dynamics in a three-well potential, and for the Charney-DeVore model, which is a paradigmatic toy model of multistability for atmospheric dynamics. For these two dynamics, we show that having observed a few transitions is enough to have a very efficient data-based score function for the rare event algorithm. This new approach is promising for use for complex dynamics: the rare events can be simulated with a minimal prior knowledge and the results are much more precise than those obtained with a user-designed score function.

read more

References
More filters
Book

Computer Simulation of Liquids

TL;DR: In this paper, the gear predictor -corrector is used to calculate forces and torques in a non-equilibrium molecular dynamics simulation using Monte Carlo methods. But it is not suitable for the gear prediction problem.
Journal ArticleDOI

Brownian motion in a field of force and the diffusion model of chemical reactions

TL;DR: In this article, a particle which is caught in a potential hole and which, through the shuttling action of Brownian motion, can escape over a potential barrier yields a suitable model for elucidating the applicability of the transition state method for calculating the rate of chemical reactions.
Journal ArticleDOI

The Activated Complex in Chemical Reactions

TL;DR: In this paper, the probability of the activated state is calculated using ordinary statistical mechanics, and the probability multiplied by the rate of decomposition gives the specific rate of reaction, and necessary conditions for general statistical treatment to reduce to the usual kinetic treatment are given.
Journal ArticleDOI

An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression

TL;DR: Kernel and nearest-neighbor regression estimators are local versions of univariate location estimators, and so they can readily be introduced to beginning students and consulting clients who are familiar with such summaries as the sample mean and median.
Related Papers (5)