scispace - formally typeset
Open AccessProceedings ArticleDOI

Data Distillation: Towards Omni-Supervised Learning

Reads0
Chats0
TLDR
It is argued that visual recognition models have recently become accurate enough that it is now possible to apply classic ideas about self-training to challenging real-world data and propose data distillation, a method that ensembles predictions from multiple transformations of unlabeled data, using a single model, to automatically generate new training annotations.
Abstract
We investigate omni-supervised learning, a special regime of semi-supervised learning in which the learner exploits all available labeled data plus internet-scale sources of unlabeled data. Omni-supervised learning is lower-bounded by performance on existing labeled datasets, offering the potential to surpass state-of-the-art fully supervised methods. To exploit the omni-supervised setting, we propose data distillation, a method that ensembles predictions from multiple transformations of unlabeled data, using a single model, to automatically generate new training annotations. We argue that visual recognition models have recently become accurate enough that it is now possible to apply classic ideas about self-training to challenging real-world data. Our experimental results show that in the cases of human keypoint detection and general object detection, state-of-the-art models trained with data distillation surpass the performance of using labeled data from the COCO dataset alone.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article

Mask R-CNN

TL;DR: This work presents a conceptually simple, flexible, and general framework for object instance segmentation that outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners.
Journal ArticleDOI

A survey on Image Data Augmentation for Deep Learning

TL;DR: This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing DataAugmentation, a data-space solution to the problem of limited data.
Proceedings ArticleDOI

Self-Training With Noisy Student Improves ImageNet Classification

TL;DR: A simple self-training method that achieves 88.4% top-1 accuracy on ImageNet, which is 2.0% better than the state-of-the-art model that requires 3.5B weakly labeled Instagram images.
Journal ArticleDOI

Mask R-CNN

TL;DR: Mask R-CNN as discussed by the authors extends Faster-RCNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition, which achieves state-of-the-art performance in instance segmentation.
Journal ArticleDOI

Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation

TL;DR: This article provides a detailed review of the solutions above, summarizing both the technical novelties and empirical results, and compares the benefits and requirements of the surveyed methodologies and provides recommended solutions.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)