scispace - formally typeset
Open AccessProceedings ArticleDOI

DeepBox: Learning Objectness with Convolutional Networks

TLDR
DeepBox as mentioned in this paper uses convolutional neural networks (CNNs) to rerank proposals from a bottom-up method, which leads to a 4.5-point gain in detection mAP.
Abstract
Existing object proposal approaches use primarily bottom-up cues to rank proposals, while we believe that "objectness" is in fact a high level construct. We argue for a data-driven, semantic approach for ranking object proposals. Our framework, which we call DeepBox, uses convolutional neural networks (CNNs) to rerank proposals from a bottom-up method. We use a novel four-layer CNN architecture that is as good as much larger networks on the task of evaluating objectness while being much faster. We show that DeepBox significantly improves over the bottom-up ranking, achieving the same recall with 500 proposals as achieved by bottom-up methods with 2000. This improvement generalizes to categories the CNN has never seen before and leads to a 4.5-point gain in detection mAP. Our implementation achieves this performance while running at 260 ms per image.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Object Detection With Deep Learning: A Review

TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Journal ArticleDOI

Deep Learning for Generic Object Detection: A Survey

TL;DR: A comprehensive survey of the recent achievements in this field brought about by deep learning techniques, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics.
Proceedings ArticleDOI

BING: Binarized Normed Gradients for Objectness Estimation at 300fps

TL;DR: It is observed that generic objects with well-defined closed boundary can be discriminated by looking at the norm of gradients, with a suitable resizing of their corresponding image windows in to a small fixed size, so as to train a generic objectness measure.
Journal ArticleDOI

Review of Deep Learning Algorithms and Architectures

TL;DR: This paper reviews several optimization methods to improve the accuracy of the training and to reduce training time, and delve into the math behind training algorithms used in recent deep networks.
Posted Content

Object Detection in 20 Years: A Survey

TL;DR: This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019), and makes an in-deep analysis of their challenges as well as technical improvements in recent years.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book ChapterDOI

Microsoft COCO: Common Objects in Context

TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Posted Content

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: Faster R-CNN as discussed by the authors proposes a Region Proposal Network (RPN) to generate high-quality region proposals, which are used by Fast R-NN for detection.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Related Papers (5)