scispace - formally typeset
Open AccessJournal ArticleDOI

Distributing the Kalman Filter for Large-Scale Systems

Usman A. Khan, +1 more
- 01 Oct 2008 - 
- Vol. 56, Iss: 10, pp 4919-4935
TLDR
A distributed Kalman filter to estimate the state of a sparsely connected, large-scale, n -dimensional, dynamical system monitored by a network of N sensors is presented and the proposed algorithm achieves full distribution of the Kalman Filter.
Abstract
This paper presents a distributed Kalman filter to estimate the state of a sparsely connected, large-scale, n -dimensional, dynamical system monitored by a network of N sensors. Local Kalman filters are implemented on nl-dimensional subsystems, nl Lt n, obtained by spatially decomposing the large-scale system. The distributed Kalman filter is optimal under an Lth order Gauss-Markov approximation to the centralized filter. We quantify the information loss due to this Lth-order approximation by the divergence, which decreases as L increases. The order of the approximation L leads to a bound on the dimension of the subsystems, hence, providing a criterion for subsystem selection. The (approximated) centralized Riccati and Lyapunov equations are computed iteratively with only local communication and low-order computation by a distributed iterate collapse inversion (DICI) algorithm. We fuse the observations that are common among the local Kalman filters using bipartite fusion graphs and consensus averaging algorithms. The proposed algorithm achieves full distribution of the Kalman filter. Nowhere in the network, storage, communication, or computation of n-dimensional vectors and matrices is required; only nl Lt n dimensional vectors and matrices are communicated or used in the local computations at the sensors. In other words, knowledge of the state is itself distributed.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Gossip Algorithms for Distributed Signal Processing

TL;DR: An overview of recent gossip algorithms work, including convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping, and the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.
Journal ArticleDOI

Diffusion Strategies for Distributed Kalman Filtering and Smoothing

TL;DR: This work studies the problem of distributed Kalman filtering and smoothing, and proposes diffusion algorithms to solve each one of these problems, and compares the simulation results with the theoretical expressions, and notes that the proposed approach outperforms existing techniques.
Journal ArticleDOI

Distributed model predictive control: A tutorial review and future research directions

TL;DR: The goal is to not only conceptually review the results in this area but also to provide enough algorithmic details so that the advantages and disadvantages of the various approaches can become quite clear.
Book

Adaptation, Learning, and Optimization Over Networks

TL;DR: The limits of performance of distributed solutions are examined and procedures that help bring forth their potential more fully are discussed and a useful statistical framework is adopted and performance results that elucidate the mean-square stability, convergence, and steady-state behavior of the learning networks are derived.

Adaptive Networks

TL;DR: Under reasonable technical conditions on the data, the adaptive networks are shown to be mean square stable in the slow adaptation regime, and their mean square error performance and convergence rate are characterized in terms of the network topology and data statistical moments.
References
More filters
Book ChapterDOI

A New Approach to Linear Filtering and Prediction Problems

TL;DR: In this paper, the clssical filleting and prediclion problem is re-examined using the Bode-Shannon representation of random processes and the?stat-tran-sition? method of analysis of dynamic systems.
Journal ArticleDOI

New Results in Linear Filtering and Prediction Theory

TL;DR: The Duality Principle relating stochastic estimation and deterministic control problems plays an important role in the proof of theoretical results and properties of the variance equation are of great interest in the theory of adaptive systems.
Journal Article

Optimal Filtering

TL;DR: This book helps to fill the void in the market and does that in a superb manner by covering the standard topics such as Kalman filtering, innovations processes, smoothing, and adaptive and nonlinear estimation.
Book

Modern graph theory

TL;DR: This book presents an account of newer topics, including Szemer'edi's Regularity Lemma and its use; Shelah's extension of the Hales-Jewett Theorem; the precise nature of the phase transition in a random graph process; the connection between electrical networks and random walks on graphs; and the Tutte polynomial and its cousins in knot theory.