scispace - formally typeset
Journal ArticleDOI

Equation-free: The computer-aided analysis of complex multiscale systems

Reads0
Chats0
TLDR
Over the last few years with several collaborators, a mathematically inspired, computational enabling technology is developed and validated that allows the modeler to perform macroscopic tasks acting on the microscopic models directly, and can lead to experimental protocols for the equation-free exploration of complex system dynamics.
Abstract
The best available descriptions of systems often come at a fine level (atomistic, stochastic, microscopic, agent based), whereas the questions asked and the tasks required by the modeler (prediction, parametric analysis, optimization, and control) are at a much coarser, macroscopic level. Traditional modeling approaches start by deriving macroscopic evolution equations from microscopic models, and then bringing an arsenal of computational tools to bear on these macroscopic descriptions. Over the last few years with several collaborators, we have developed and validated a mathematically inspired, computational enabling technology that allows the modeler to perform macroscopic tasks acting on the microscopic models directly. We call this the “equation-free” approach, since it circumvents the step of obtaining accurate macroscopic descriptions. The backbone of this approach is the design of computational “experiments”. In traditional numerical analysis, the main code “pings“ a subroutine containing the model, and uses the returned information (time derivatives, etc.) to perform computer-assisted analysis. In our approach the same main code “pings“ a subroutine that runs an ensemble of appropriately initialized computational experiments from which the same quantities are estimated. Traditional continuum numerical algorithms can, thus, be viewed as protocols for experimental design (where “experiment“ means a computational experiment set up, and performed with a model at a different level of description). Ultimately, what makes it all possible is the ability to initialize computational experiments at will. Short bursts of appropriately initialized computational experimentation -through matrix-free numerical analysis, and systems theory tools like estimationbridge microscopic simulation with macroscopic modeling. If enough control authority exists to initialize laboratory experiments “at will” this computational enabling technology can lead to experimental protocols for the equation-free exploration of complex system dynamics.

read more

Citations
More filters
Posted Content

A fast time-stepping strategy for dynamical systems equipped with a surrogate model

TL;DR: This work proposes a new accelerated time-stepping strategy based on the multirate infinitesimal general-structure additive Runge-Kutta (MRI-GARK) framework that can be significantly more efficient than using only the full or only the surrogate model for the integration.
Journal ArticleDOI

Using feedback control and Newton iterations to track dynamically unstable phenomena in experiments

TL;DR: In this article, a simplified version of the classical feedback control and Newton iterations is proposed, which is a combination of time-delayed feedback control (as proposed by Pyragas) and a Newton iteration on a low-dimensional system of equations, and both parts of the algorithm are uniformly stable near the saddle-node bifurcation.
Journal ArticleDOI

Equation-free computation of coarse-grained center manifolds of microscopic simulators

TL;DR: An algorithm, based on the Equation-free concept, for the approximation of coarse-grained center manifolds of microscopic simulators is addressed, assuming that the macroscopic equations describing the emergent dynamics are not available in a closed form.
Journal ArticleDOI

A Numerical Method for the Parametrization of Stable and Unstable Manifolds of Microscopic Simulators.

TL;DR: This work addresses a numerical methodology for the computation of coarse-grained stable and unstable manifolds of saddle equilibria/stationary states of multiscale/stochastic systems for which a "good" macroscopic description in the form of Ordinary (ODEs) and/or Partial differential equations (PDEs) does not explicitly/ analytically exists in a closed form.
Journal Article

Accessing the Impact of the Contact Transmission Network Topology in Ebola Virus Epidemic in Liberia: a Comparative Study Using Agent-based Simulations

TL;DR: Accessing the Impact of the Contact Transmission Network Topology in Ebola Virus Epidemic in Liberia: a Comparative Study using Agent-Based Simulations using agent-based simulations is presented.
References
More filters
Book

System Identification: Theory for the User

Lennart Ljung
TL;DR: Das Buch behandelt die Systemidentifizierung in dem theoretischen Bereich, der direkte Auswirkungen auf Verstaendnis and praktische Anwendung der verschiedenen Verfahren zur IdentifIZierung hat.
Journal ArticleDOI

Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes

TL;DR: In this paper, a numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated, and the relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration.
Book

Iterative Methods for Sparse Linear Systems

Yousef Saad
TL;DR: This chapter discusses methods related to the normal equations of linear algebra, and some of the techniques used in this chapter were derived from previous chapters of this book.
Book

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

TL;DR: In this article, the authors introduce differential equations and dynamical systems, including hyperbolic sets, Sympolic Dynamics, and Strange Attractors, and global bifurcations.

A Reflection on Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

TL;DR: In this paper, the authors introduce differential equations and dynamical systems, including hyperbolic sets, Sympolic Dynamics, and Strange Attractors, and global bifurcations.
Related Papers (5)