scispace - formally typeset
Open AccessDOI

Experiments on the oxidation of boron carbide at high temperatures

TLDR
In this paper, the authors used gas production data to determine the oxidation kinetics of boron carbide in steam, and found that the reaction kinetics are strongly influenced by the surrounding conditions, in particular by the steam flow rate and the steam partial pressure.
Abstract
Boron carbide is widely used as neutron absorbing control rod material in Western Boiling Water Reactors (BWR) and Russian RBMKs and WERs and some Pressurised Water Reactors (PWR). During a hypothetical severe accident the B 4 C reacts with the surrounding stainless steel cladding forming eutectic melts at temperatures above 1200 °C which is far below the melting temperatures of all components. The remaining uncovered absorber material as well as the B 4 C/metal mixtures may be exposed to the steam in the reactor core. The oxidation of boron carbide is highly exothermic and produces various gaseous reaction products like H 2 , CO, CO 2 and CH 4 which may affect the fission product chemistry. Extensive test series were performed to study the oxidation behaviour of boron carbide at high temperatures. Four types of B 4 C specimens with quite different properties were investigated under various atmospheres in the temperature range between 800 and 1600 °C. In contrast to most of the data published so far mainly at lower temperatures which are based on the evaluation of mass changes, gas production data were used to determine the oxidation kinetics of B 4 C in steam. The oxidation kinetics of boron carbide are determined by the formation of a liquid boron oxide barrier diffusion layer and its loss due to the reaction with surplus steam to form volatile boric acids andlor direct evaporation at temperatures above 1500 °C. The overall reaction kinetics are paralinear. Under the conditions typical for severe accidents (high temperatures and steam flow rates) linear oxidation kinetics establishes soon after initiation of the oxidation. The oxidation kinetics are strongly influenced by the surrounding conditions, in particular by the steam flow rate and the steam partial pressure. On the other hand, the properties of the B 4 C sample itself have only a limited effect on the oxidation. Only very low amounts of methane - which is of interest for the fission gas chemistry due to the formation of organic iodine - were produced in these tests. The highest methane release was measured at the lowest test temperatures in agreement with thermo-chemical pre-test calculations. This report updates and replaces the internal report SAM-COLOSS-P026 published as one deliverable of the EC COLOSS program (5 t h Framework Program 2000-2003).

read more

Content maybe subject to copyright    Report

Forschungszentrum Karlsruhe
in der Helmholtz-Gemeinschaft
Wissenschaftliche Berichte
FZKA 6979
Experiments on the
Oxidation of Boron Carbide
at High Temperatures
M. Steinbrück, A. Meier, U. Stegmaier,
L. Steinbock
Institut für Materialforschung
Programm Nukleare Sicherheitsforschung
Mai 2004

Forschungszentrum Karlsruhe
in der Helmholtz-Gemeinschaft
Wissenschaftliche Berichte
Forschungszentrum Karlsruhe GmbH, Karlsruhe
2004
FZKA 6979
Experiments on the Oxidation of Boron Carbide
at High Temperatures
M. Steinbrück, A. Meier, U. Stegmaier, L. Steinbock
Institut für Materialforschung
Programm Nukleare Sicherheitsforschung

Impressum der Print-Ausgabe:
Als Manuskript gedruckt
Für diesen Bericht behalten wir uns alle Rechte vor
Forschungszentrum Karlsruhe GmbH
Postfach 3640, 76021 Karlsruhe
Mitglied der Hermann von Helmholtz-Gemeinschaft
Deutscher Forschungszentren (HGF)
ISSN 0947-8620
urn:nbn:de:0005-069792

i
OXIDATION VON BORKARBID BEI HOHEN TEMPERATUREN
ZUSAMMENFASSUNG
Borkarbid wird weltweit in verschiedenen Kernreaktoren als Absorbermaterial in Steuer-
stäben eingesetzt. Während eines hypothetischen schweren Störfalls führen eutektische
Wechselwirkungen zwischen B
4
C und den umgebenden Hüllrohren aus rostfreiem Stahl
schon bei Temperaturen um 1200 °C und somit weit unterhalb der Schmelztemperaturen der
einzelnen Komponenten zur Bildung von Schmelzphasen. Das so freigelegte Absorber-
material sowie gebildete B
4
C/Metall-Schmelzen sind dem Dampf im Reaktor ausgesetzt. Die
Oxidation von Borkarbid ist stark exotherm und führt zur Bildung von gasförmigen
Reaktionsprodukten, wie H
2
, CO, CO
2
and CH
4
, die u. a. die Spaltproduktchemie
beeinflussen.
Es wurden umfangreiche Versuchsserien zum Oxidationsverhalten von Borkarbid bei hohen
Temperaturen durchgeführt. Vier unterschiedliche B
4
C Probenmaterialien wurden unter
unterschiedlichen dampfhaltigen Atmosphären im Temperaturbereich zwischen 800 und
1600 °C untersucht. Im Unterschied zu bisher publizierten Daten bei niedrigeren
Temperaturen, die auf der Auswertung von Masseänderungen der Proben basieren, wurden
in den hier vorgestellten Untersuchungen massenspektrometrisch ermittelte Gas-
freisetzungsraten zur Bestimmung der Oxidationskinetik herangezogen.
Die Oxidation von Borkarbid wird bestimmt durch die Bildung einer flüssigen oberflächlichen
Boroxidschicht, die als Diffusionsbarriere wirkt, und deren Reaktion mit Dampf unter Bildung
von flüchtigen Borsäuren bzw. deren direkter Verdampfung bei Temperaturen oberhalb
1500 °C. Bildung und Verbrauch von B
2
O
3
ergeben insgesamt eine paralineare Reaktions-
kinetik. Bei den für schwere Störfälle typischen Bedingungen (Temperatur, Dampfangebot)
stellt sich aber schon kurz nach Initiierung der Oxidation eine lineare Oxidationsrate ein.
Diese ist stark beeinflusst von den thermohydraulischen Umgebungsbedingungen,
insbesondere von Dampfrate und Dampfpartialdruck. Die Eigenschaften der B
4
C-Proben
selbst haben nur einen vergleichsweise geringen Einfluss auf die Oxidationskinetik.
Bei den gewählten Versuchsbedingungen wurden nur sehr geringe Mengen Methan gebildet,
welches einen großen Einfluss auf die Chemie des Spaltprodukts Jod hat. Thermo-
chemische Rechnungen bestätigten, dass Methan nur bei Temperaturen unterhalb 800 °C
bevorzugt gebildet wird.
Dieser Bericht aktualisiert und ersetzt den im Rahmen des EU-Programms COLOSS (5.
Rahmenprogramm 2000-2003) erstellten internen Bericht SAM-COLOSS-P026.

ii
ABSTRACT
Boron carbide is widely used as neutron absorbing control rod material in Western Boiling
Water Reactors (BWR) and Russian RBMKs and VVERs and some Pressurised Water
Reactors (PWR). During a hypothetical severe accident the B
4
C reacts with the surrounding
stainless steel cladding forming eutectic melts at temperatures above 1200 °C which is far
below the melting temperatures of all components. The remaining uncovered absorber
material as well as the B
4
C/metal mixtures may be exposed to the steam in the reactor core.
The oxidation of boron carbide is highly exothermic and produces various gaseous reaction
products like H
2
, CO, CO
2
and CH
4
which may affect the fission product chemistry.
Extensive test series were performed to study the oxidation behaviour of boron carbide at
high temperatures. Four types of B
4
C specimens with quite different properties were
investigated under various atmospheres in the temperature range between 800 and 1600 °C.
In contrast to most of the data published so far mainly at lower temperatures which are
based on the evaluation of mass changes, gas production data were used to determine the
oxidation kinetics of B
4
C in steam.
The oxidation kinetics of boron carbide are determined by the formation of a liquid boron
oxide barrier diffusion layer and its loss due to the reaction with surplus steam to form volatile
boric acids and/or direct evaporation at temperatures above 1500 °C. The overall reaction
kinetics are paralinear. Under the conditions typical for severe accidents (high temperatures
and steam flow rates) linear oxidation kinetics establishes soon after initiation of the
oxidation.
The oxidation kinetics are strongly influenced by the surrounding conditions, in particular by
the steam flow rate and the steam partial pressure. On the other hand, the properties of the
B
4
C sample itself have only a limited effect on the oxidation.
Only very low amounts of methane - which is of interest for the fission gas chemistry due to
the formation of organic iodine - were produced in these tests. The highest methane release
was measured at the lowest test temperatures in agreement with thermo-chemical pre-test
calculations.
This report updates and replaces the internal report SAM-COLOSS-P026 published as one
deliverable of the EC COLOSS program (5
th
Framework Program 2000-2003).

Citations
More filters
Journal ArticleDOI

Synopsis and outcome of the QUENCH experimental program

TL;DR: The QUENCH program at the Karlsruhe Institute of Technology (KIT) as mentioned in this paper has performed 15 integral bundle experiments with 21-31 electrically heated fuel rod simulators of 2.5-m length.
Journal ArticleDOI

Study of boron behaviour in the primary circuit of water reactors under severe accident conditions: A comparison of Phebus FPT3 results with other recent integral and separate-effects data

TL;DR: In this paper, the authors compared the phenomena involving B 4 C observed in these experiments, taking the recently released data from Phebus FPT3 as a base, concentrating on transport and deposition behaviour in the circuit, with reference to degradation where necessary, e.g. as a source of carbonaceous gases.
Journal ArticleDOI

Investigation on boron carbide oxidation for nuclear reactor safety: Experiments in highly oxidising conditions

TL;DR: In this article, the authors investigated the boron carbide pellet oxidation in steam/argon mixtures in the temperature range 1200-1800°C for steam partial pressures between 0.2 and 0.8 bar and total flows (steam+argon) between 2.5 and 10 g/min resulting in gas velocities from 1.01 to 5.34 m/s.
Journal ArticleDOI

Modeling of boron carbide oxidation in steam

TL;DR: In this article, a simple parametric model has been developed for the simulation of boron carbide oxidation tests at high temperatures done at Forschungszentrum Karlsruhe.
References
More filters
Journal ArticleDOI

Oxidation of Boron Carbide by Air, Water, and Air‐Water Mixtures at Elevated Temperatures

TL;DR: In this article, a study of the oxidation of boron carbide powder showed measurable reactions at temperatures as low as 250 deg C with H/sub 2/O vapor and 450 deg C in dry air.
Journal ArticleDOI

Degradation and oxidation of B4C control rod segments at high temperatures

TL;DR: In this paper, the degradation of boron carbide absorber rods and the oxidation of the resultant absorber melts were investigated in the temperature range between 800°C and 1700°C in a steam atmosphere.
Journal ArticleDOI

Chemical interactions between B4C and stainless steel at hightemperatures

TL;DR: In this paper, the reaction couples of B 4 C and 304 stainless steel were isothermally annealed in the temperature range between 1073 and 1623 K. The overall reaction generally obeyed the parabolic rate law.
Journal ArticleDOI

The reaction of boronated graphite with water vapor

TL;DR: The reaction of boronated graphite with water vapor occurs by two consecutive reactions in the temperature range 830°-930°, namely B4C+6H2D → 2B2O3 + C + 6H2 (1) and B2O 3 + H2O → 2HBO2 (2).
ReportDOI

Boron carbide: Steam reactions with cesium hydroxide and with cesium iodide at 1270K in an Inconel 600 system

TL;DR: In this paper, the effect of boron carbide on reactor accident conditions was examined in three laboratory scale tests, conducted in steam at 1270/sup 0/K in an Inconel 600 system and then that system with an addition of cesium hydroxide or Cesium iodide vapor, showing that significant reactions were observed between the boric oxide formed on the B/sub 4/C and both the csOH vapor and the CsI vapor.
Related Papers (5)