scispace - formally typeset
Journal ArticleDOI

Hybrid position/force control of manipulators

Reads0
Chats0
TLDR
A new conceptually simple approach to controlling compliant motions of a robot manipulator that combines force and torque information with positional data to satisfy simultaneous position and force trajectory constraints specified in a convenient task related coordinate system is presented.
Abstract
A new conceptually simple approach to controlling compliant motions of a robot manipulator is presented. The 'hybrid' technique described combines force and torque information with positional data to satisfy simultaneous position and force trajectory constraints specified in a convenient task related coordinate system. Analysis, simulation, and experiments are used to evaluate the controller's ability to execute trajectories using feedback from a force sensing wrist and from position sensors found in the manipulator joints. The results show that the method achieves stable, accurate control of force and position trajectories for a variety of test conditions.

read more

Citations
More filters
MonographDOI

Planning Algorithms: Introductory Material

TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Journal ArticleDOI

Impedance Control: An Approach to Manipulation: Part I—Theory

TL;DR: It is shown that components of the manipulator impedance may be combined by superposition even when they are nonlinear, and a generalization of a Norton equivalent network is defined for a broad class of nonlinear manipulators which separates the control of motion from theControl of impedance while preserving the superposition properties of the Norton network.
Journal ArticleDOI

A unified approach for motion and force control of robot manipulators: The operational space formulation

TL;DR: A framework for the analysis and control of manipulator systems with respect to the dynamic behavior of their end-effectors is developed, and the unified approach for motion and force control is developed.
Proceedings ArticleDOI

Series elastic actuators

TL;DR: It is proposed that for natural tasks, zero motion force bandwidth isn't everything, and incorporating series elasticity as a purposeful element within the actuator is a good idea.
Journal ArticleDOI

Compliance and Force Control for Computer Controlled Manipulators

TL;DR: A theory of force control based on formal models of the manipulator and the task geometry is presented, isolating the programmer from the fundamental complexity of low-level manipulator control.