scispace - formally typeset
Open AccessBook

Lanczos algorithms for large symmetric eigenvalue computations

TLDR
This chapter discusses Lanczos Procedures with no Reorthogonalization for Real Symmetric Problems, and an Identification Test, 'Good' versus' spurious' Eigenvalues.
Abstract
0 Preliminaries: Notation and Definitions.- 0.1 Notation.- 0.2 Special Types of Matrices.- 0.3 Spectral Quantities.- 0.4 Types of Matrix Transformations.- 0.5 Subspaces, Projections, and Ritz Vectors.- 0.6 Miscellaneous Definitions.- 1 Real' symmetric' Problems.- 1.1 Real Symmetric Matrices.- 1.2 Perturbation Theory.- 1.3 Residual Estimates of Errors.- 1.4 Eigenvalue Interlacing and Sturm Sequencing.- 1.5 Hermitian Matrices.- 1.6 Real Symmetric Generalized Eigenvalue Problems.- 1.7 Singular Value Problems.- 1.8 Sparse Matrices.- 1.9 Reorderings and Factorization of Matrices.- 2 Lanczos Procedures, Real Symmetric Problems.- 2.1 Definition, Basic Lanczos Procedure.- 2.2 Basic Lanczos Recursion, Exact Arithmetic.- 2.3 Basic Lanczos Recursion, Finite Precision Arithmetic.- 2.4 Types of Practical Lanczos Procedures.- 2.5 Recent Research on Lanczos Procedures.- 3 Tridiagonal Matrices.- 3.1 Introduction.- 3.2 Adjoint and Eigenvector Formulas.- 3.3 Complex Symmetric or Hermitian Tridiagonal.- 3.4 Eigenvectors, Using Inverse Iteration.- 3.5 Eigenvalues, Using Sturm Sequencing.- 4 Lanczos Procedures with no Reorthogonalization for Real Symmetric Problems.- 4.1 Introduction.- 4.2 An Equivalence, Exact Arithmetic.- 4.3 An Equivalence, Finite Precision Arithmetic.- 4.4 The Lanczos Phenomenon.- 4.5 An Identification Test, 'Good' versus' spurious' Eigenvalues.- 4.6. Example, Tracking Spurious Eigenvalues.- 4.7 Lanczos Procedures, Eigenvalues.- 4.8 Lanczos Procedures, Eigenvectors.- 4.9 Lanczos Procedure, Hermitian, Generalized Symmetric.- 5 Real Rectangular Matrices.- 5.1 Introduction.- 5.2 Relationships With Eigenvalues.- 5.3 Applications.- 5.4 Lanczos Procedure, Singular Values and Vectors.- 6 Nondefective Complex Symmetric Matrices.- 6.1 Introduction.- 6.2 Properties of Complex Symmetric Matrices.- 6.3 Lanczos Procedure, Nondefective Matrices.- 6.4 QL Algorithm, Complex Symmetric Tridiagonal Matrices.- 7 Block Lanczos Procedures, Real Symmetric Matrices.- 7.1 Introduction.- 7.2 Iterative Single-vector, Optimization Interpretation.- 7.3 Iterative Block, Optimization Interpretation.- 7.4 Iterative Block, A Practical Implementation.- 7.5 A Hybrid Lanczos Procedure.- References.- Author and Subject Indices.

read more

Citations
More filters
Journal ArticleDOI

The Geometry of Algorithms with Orthogonality Constraints

TL;DR: The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide a top level mathematical view of previously unrelated algorithms and developers of new algorithms and perturbation theories will benefit from the theory.
Journal ArticleDOI

Point Set Registration: Coherent Point Drift

TL;DR: A probabilistic method, called the Coherent Point Drift (CPD) algorithm, is introduced for both rigid and nonrigid point set registration and a fast algorithm is introduced that reduces the method computation complexity to linear.
Journal ArticleDOI

The density-matrix renormalization group

TL;DR: The density-matrix renormalization group (DMRG) as mentioned in this paper is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription.
Journal ArticleDOI

A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States

TL;DR: This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject, that should be a good place for newcomers to get familiarized with some of the key ideas in the field.
Journal ArticleDOI

Implicit application of polynomial filters in a k-step Arnoldi method

TL;DR: The iterative scheme is shown to be a truncation of the standard implicitly shifted QR-iteration for dense problems and it avoids the need to explicitly restart the Arnoldi sequence.