scispace - formally typeset
Journal ArticleDOI

Learn++: an incremental learning algorithm for supervised neural networks

TLDR
The proposed algorithm enables supervised NN paradigms, such as the multilayer perceptron (MLP), to accommodate new data, including examples that correspond to previously unseen classes, as well as a real-world classification task.
Abstract
We introduce Learn++, an algorithm for incremental training of neural network (NN) pattern classifiers. The proposed algorithm enables supervised NN paradigms, such as the multilayer perceptron (MLP), to accommodate new data, including examples that correspond to previously unseen classes. Furthermore, the algorithm does not require access to previously used data during subsequent incremental learning sessions, yet at the same time, it does not forget previously acquired knowledge. Learn++ utilizes ensemble of classifiers by generating multiple hypotheses using training data sampled according to carefully tailored distributions. The outputs of the resulting classifiers are combined using a weighted majority voting procedure. We present simulation results on several benchmark datasets as well as a real-world classification task. Initial results indicate that the proposed algorithm works rather well in practice. A theoretical upper bound on the error of the classifiers constructed by Learn++ is also provided.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Ensemble based systems in decision making

TL;DR: Conditions under which ensemble based systems may be more beneficial than their single classifier counterparts are reviewed, algorithms for generating individual components of the ensemble systems, and various procedures through which the individual classifiers can be combined are reviewed.
Proceedings ArticleDOI

iCaRL: Incremental Classifier and Representation Learning

TL;DR: In this paper, the authors introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively.
Journal ArticleDOI

A survey on concept drift adaptation

TL;DR: The survey covers the different facets of concept drift in an integrated way to reflect on the existing scattered state of the art and aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry analysts, and practitioners.
Journal ArticleDOI

Continual lifelong learning with neural networks: A review.

TL;DR: This review critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting.
Journal ArticleDOI

Surrogate-assisted evolutionary computation: Recent advances and future challenges

TL;DR: This paper provides a concise overview of the history and recent developments in surrogate-assisted evolutionary computation and suggests a few future trends in this research area.
References
More filters
Journal ArticleDOI

A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting

TL;DR: The model studied can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting, and it is shown that the multiplicative weight-update Littlestone?Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems.
Proceedings Article

Experiments with a new boosting algorithm

TL;DR: This paper describes experiments carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems and compared boosting to Breiman's "bagging" method when used to aggregate various classifiers.
Journal ArticleDOI

Original Contribution: Stacked generalization

David H. Wolpert
- 05 Feb 1992 - 
TL;DR: The conclusion is that for almost any real-world generalization problem one should use some version of stacked generalization to minimize the generalization error rate.