scispace - formally typeset
Proceedings ArticleDOI

Learning Multi-attention Convolutional Neural Network for Fine-Grained Image Recognition

TLDR
This paper proposes a novel part learning approach by a multi-attention convolutional neural network (MA-CNN), where part generation and feature learning can reinforce each other, and shows the best performances on three challenging published fine-grained datasets.
Abstract
Recognizing fine-grained categories (e.g., bird species) highly relies on discriminative part localization and part-based fine-grained feature learning. Existing approaches predominantly solve these challenges independently, while neglecting the fact that part localization (e.g., head of a bird) and fine-grained feature learning (e.g., head shape) are mutually correlated. In this paper, we propose a novel part learning approach by a multi-attention convolutional neural network (MA-CNN), where part generation and feature learning can reinforce each other. MA-CNN consists of convolution, channel grouping and part classification sub-networks. The channel grouping network takes as input feature channels from convolutional layers, and generates multiple parts by clustering, weighting and pooling from spatially-correlated channels. The part classification network further classifies an image by each individual part, through which more discriminative fine-grained features can be learned. Two losses are proposed to guide the multi-task learning of channel grouping and part classification, which encourages MA-CNN to generate more discriminative parts from feature channels and learn better fine-grained features from parts in a mutual reinforced way. MA-CNN does not need bounding box/part annotation and can be trained end-to-end. We incorporate the learned parts from MA-CNN with part-CNN for recognition, and show the best performances on three challenging published fine-grained datasets, e.g., CUB-Birds, FGVC-Aircraft and Stanford-Cars.

read more

Citations
More filters
Journal ArticleDOI

A survey of the recent architectures of deep convolutional neural networks

TL;DR: Deep Convolutional Neural Networks (CNNs) as mentioned in this paper are a special type of Neural Networks, which has shown exemplary performance on several competitions related to Computer Vision and Image Processing.
Journal ArticleDOI

Occlusion Aware Facial Expression Recognition Using CNN With Attention Mechanism

TL;DR: Visualization results demonstrate that, compared with the CNN without Gate Unit, ACNNs are capable of shifting the attention from the occluded patches to other related but unobstructed ones and outperform other state-of-the-art methods on several widely used in thelab facial expression datasets under the cross-dataset evaluation protocol.
Posted Content

This Looks Like That: Deep Learning for Interpretable Image Recognition

TL;DR: A deep network architecture -- prototypical part network (ProtoPNet), that reasons in a similar way to the way ornithologists, physicians, and others would explain to people on how to solve challenging image classification tasks, that provides a level of interpretability that is absent in other interpretable deep models.
Book ChapterDOI

Learning to Navigate for Fine-grained Classification

TL;DR: In this paper, a self-supervision mechanism is proposed to locate informative regions without the need of bounding-box/part annotations, which consists of a navigator agent, a teacher agent and a scrutinizer agent.
Proceedings ArticleDOI

Destruction and Construction Learning for Fine-Grained Image Recognition

TL;DR: A novel "Destruction and Construction Learning" (DCL) method to enhance the difficulty of fine-grained recognition and exercise the classification model to acquire expert knowledge.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Posted Content

Rich feature hierarchies for accurate object detection and semantic segmentation

TL;DR: This paper proposes a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%.