scispace - formally typeset
Open AccessPosted Content

Learning Undirected Posteriors by Backpropagation through MCMC Updates.

TLDR
An efficient method to train undirected posteriors is developed by showing that the gradient of the training objective with respect to the parameters of the Undirected posterior can be computed by backpropagation through Markov chain Monte Carlo updates.
Abstract
The representation of the posterior is a critical aspect of effective variational autoencoders (VAEs). Poor choices for the posterior have a detrimental impact on the generative performance of VAEs due to the mismatch with the true posterior. We extend the class of posterior models that may be learned by using undirected graphical models. We develop an efficient method to train undirected posteriors by showing that the gradient of the training objective with respect to the parameters of the undirected posterior can be computed by backpropagation through Markov chain Monte Carlo updates. We apply these gradient estimators for training discrete VAEs with Boltzmann machine posteriors and demonstrate that undirected models outperform previous results obtained using directed graphical models as posteriors.

read more

Citations
More filters
Posted Content

PixelVAE++: Improved PixelVAE with Discrete Prior

TL;DR: PixelVAE++ as mentioned in this paper combines the best features of the two models and constructs a generative model that is able to learn local and global structures, achieving state-of-the-art performance on binary data sets.
Journal Article

Direct Evolutionary Optimization of Variational Autoencoders with Binary Latents

TL;DR: The studied approach shows that training of VAEs is indeed possible without sampling-based approximation and reparameterization, and makes VAEs competitive where they have previously been outperformed by non-generative approaches.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Posted Content

Adam: A Method for Stochastic Optimization

TL;DR: In this article, the adaptive estimates of lower-order moments are used for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimate of lowerorder moments.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Journal ArticleDOI

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning

TL;DR: This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units that are shown to make weight adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement tasks and certain limited forms of delayed-reInforcement tasks, and they do this without explicitly computing gradient estimates.
Related Papers (5)