Linear and Nonlinear Analysis of a Smart Beam Using General Electrothermoelastic Formulation
TL;DR: In this article, coupled electrothermoelastic equations applicable to the analysis of smart structures have been derived from first principles, and applying a layer-by-layer finite element model, the induced potential and mechanical deformations in the piezo and non-piezo core material have been obtained for various cases of actuation and sensing of a smart beam under external mechanical load and actuation potential.
Abstract: Coupled electrothermoelastic equations applicable to the analysis of smart structures have been derived from first principles. Using the equations and applying a layer-by-layer finite element model, the induced potential and mechanical deformations in the piezo and nonpiezo core material have been obtained for various cases of actuation and sensing of a smart beam under external mechanical load and actuation potential. The present study clearly brings out the essential difference between sensing and actuation. It is also brought out that the interaction between polarization and electric field in the piezo continuum leads to nonlinear distributed body force and nonsymmetric stress tensor. These nonlinear effects are found to have significant influence on the deformation of a smart beam under actuation. Shape control studies of multipatch smart beams have also been investigated.
...read more
Citations
105 citations
32 citations
30 citations
24 citations
15 citations
References
2,648 citations
1,228 citations
469 citations
455 citations