scispace - formally typeset
Open AccessJournal Article

Linear stability analysis of miscible two-fluid flow in a channel with velocity slip at the walls

Reads0
Chats0
TLDR
In this article, the authors examined the linear stability characteristics of pressure-driven two-fluid flow with same density and varying viscosities in a channel with velocity slip at the wall and showed that the flow system can be either stabilized or destabilized by designing the walls of the channel as hydrophobic surfaces.
Abstract
The linear stability characteristics of pressure-driven miscible two-fluid flow with same density and varying viscosities in a channel with velocity slip at the wall are examined. A prominent feature of the instability is that only a band of wave numbers is unstable whatever the Reynolds number is, whereas shorter wavelengths and smaller wave numbers are observed to be stable. The stability characteristics are different from both the limiting cases of interface dominated flows and continuously stratified flows in a channel with velocity slip at the wall. The flow system is destabilizing when a more viscous fluid occupies the region closer to the wall with slip. For this configuration a new mode of instability, namely the overlap mode, appears for high mass diffusivity of the two fluids. This mode arises due to the overlap of critical layer of dominant instability with the mixed layer of varying viscosity. The critical layer contains a location in the flow domain at which the base flow velocity equals the phase speed of the most unstable disturbance. Such a mode also occurs in the corresponding flow in a rigid channel, but absent in either of the above limiting cases of flow in a channel with slip. The flow is unstable at low Reynolds numbers for a wide range of wave numbers for low mass diffusivity, mimicking the interfacial instability of the immiscible flows. A configuration with less viscous fluid adjacent to the wall is more stable at moderate miscibility and this is also in contrast with the result for the limiting case of interface dominated flows in a channel with slip, where the above configuration is more unstable. It is possible to achieve stabilization or destabilization of miscible two-fluid flow in a channel with wall slip by appropriately choosing the viscosity of the fluid layer adjacent to the wall. In addition, the velocity slip at the wall has a dual role in the stability of flow system and the trend is influenced by the location of the mixed layer, the location of more viscous fluid and the mass diffusivity of the two fluids. It is well known that creating a viscosity contrast in a particular way in a rigid channel delays the occurrence of turbulence in a rigid channel. The results of the present study show that the flow system can be either stabilized or destabilized by designing the walls of the channel as hydrophobic surfaces, modeled by velocity slip at the walls. The study provides another effective strategy to control the flow system.

read more

Content maybe subject to copyright    Report

Citations
More filters

Linear stability of plane Poiseuille flow of two superposed fluids

TL;DR: In this paper, the stability of two superposed fluids of different viscosity in plane Poiseuille flow is studied numerically and conditions for the growth of an interfacial wave are identified.
Journal ArticleDOI

Stability of viscosity stratified flows down an incline: Role of miscibility and wall slip

TL;DR: In this article, the effects of wall velocity slip on the linear stability of a gravity-driven two-fluid flow down an incline are examined, and the results show that the presence of slip exhibits a promise for stabilizing the miscible flow system by raising the critical Reynolds number at the onset and decreasing the bandwidth of unstable wave numbers beyond the threshold of the dominant instability.

Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics

TL;DR: In this paper, the authors reported a dramatic reduction of liquid droplet flow resistance by engineering the surfaces into nanomechanical hydrophobic structures that shows the contact angle over 175°.
References
More filters
Book

Molecular Gas Dynamics and the Direct Simulation of Gas Flows

TL;DR: The direct simulation Monte Carlo (or DSMC) method has, in recent years, become widely used in engineering and scientific studies of gas flows that involve low densities or very small physical dimensions as mentioned in this paper.
Journal ArticleDOI

On Stresses in Rarified Gases arising from Inequalities of Temperature

TL;DR: In this paper, it was shown that the difference between the maximum and the minimum pressure at a point may be of considerable magnitude when the density of the gas is small enough, and when the inequalities of temperature are produced by small solid bodies at a higher or lower temperature than the vessel containing the gas.
Journal ArticleDOI

A general boundary condition for liquid flow at solid surfaces

TL;DR: In this paper, the authors present results from molecular dynamics simulations of newtonian liquids under shear which indicate that there exists a general nonlinear relationship between the amount of slip and the local shear rate at a solid surface.
Journal ArticleDOI

Apparent fluid slip at hydrophobic microchannel walls

TL;DR: In this article, the velocity profiles of water flowing through 30×300 μm channels were measured to within 450 nm of the micro-channel surface and the measured velocity profiles were consistent with solutions of Stokes' equation and the well accepted no-slip boundary condition.
Journal ArticleDOI

Instability due to viscosity stratification

TL;DR: In this article, it was shown that the variation of viscosity in a fluid can cause instability, however small the Reynolds number is, and that the unstable modes are in the neighbourhood of a hidden neutral mode for the case of a single fluid, which is entirely ignored in the usual theory of hydrodynamic stability.
Related Papers (5)