scispace - formally typeset
Open AccessBook

Markov Decision Processes: Discrete Stochastic Dynamic Programming

Reads0
Chats0
TLDR
Puterman as discussed by the authors provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models, focusing primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous time discrete state models.
Abstract
From the Publisher: The past decade has seen considerable theoretical and applied research on Markov decision processes, as well as the growing use of these models in ecology, economics, communications engineering, and other fields where outcomes are uncertain and sequential decision-making processes are needed. A timely response to this increased activity, Martin L. Puterman's new work provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models. It discusses all major research directions in the field, highlights many significant applications of Markov decision processes models, and explores numerous important topics that have previously been neglected or given cursory coverage in the literature. Markov Decision Processes focuses primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous-time discrete state models. The book is organized around optimality criteria, using a common framework centered on the optimality (Bellman) equation for presenting results. The results are presented in a "theorem-proof" format and elaborated on through both discussion and examples, including results that are not available in any other book. A two-state Markov decision process model, presented in Chapter 3, is analyzed repeatedly throughout the book and demonstrates many results and algorithms. Markov Decision Processes covers recent research advances in such areas as countable state space models with average reward criterion, constrained models, and models with risk sensitive optimality criteria. It also explores several topics that have received little or no attention in other books, including modified policy iteration, multichain models with average reward criterion, and sensitive optimality. In addition, a Bibliographic Remarks section in each chapter comments on relevant historic

read more

Citations
More filters
Journal ArticleDOI

Simulation-based optimization of Markov reward processes

TL;DR: This paper proposes a simulation-based algorithm for optimizing the average reward in a finite-state Markov reward process that depends on a set of parameters and relies on the regenerative structure of finite- state Markov processes.
Book

Artificial Intelligence: Foundations of Computational Agents

TL;DR: The book balances theory and experiment, showing how to link them intimately together, and develops the science of AI together with its engineering applications, to encapsulate the latest results without being exhaustive and encyclopedic.
Journal ArticleDOI

Modeling customer relationships as Markov chains

TL;DR: The concept of lifetime value (LTV) has been used extensively in the context of interactive marketing as discussed by the authors, where it can be used to help allocate spending across media (mail vs. television), vehicles (list A vs. list B), and programs (free gift vs. special price).
Proceedings Article

The Option-Critic Architecture

TL;DR: This article propose a new option-critic architecture capable of learning both the internal policies and the termination conditions of options, in tandem with the policy over options, without the need to provide any additional rewards or subgoals.
Posted Content

Provably Efficient Reinforcement Learning with Linear Function Approximation

TL;DR: This paper proves that an optimistic modification of Least-Squares Value Iteration (LSVI) achieves regret, where d is the ambient dimension of feature space, H is the length of each episode, and T is the total number of steps, and is independent of the number of states and actions.
References
More filters
Book

Functional analysis

Walter Rudin
Book

Dynamic Programming

TL;DR: The more the authors study the information processing aspects of the mind, the more perplexed and impressed they become, and it will be a very long time before they understand these processes sufficiently to reproduce them.
Journal ArticleDOI

Finding Optimal (s, S) Policies Is About As Simple As Evaluating a Single Policy

TL;DR: A new algorithm for computing optimal ( s , S ) policies is derived based upon a number of new properties of the infinite horizon cost function c as well as a new upper bound for optimal order-up-to levels S * and a new lower bound for ideal reorder levels s *.
Related Papers (5)