scispace - formally typeset
Open AccessBook

Markov Decision Processes: Discrete Stochastic Dynamic Programming

Reads0
Chats0
TLDR
Puterman as discussed by the authors provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models, focusing primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous time discrete state models.
Abstract
From the Publisher: The past decade has seen considerable theoretical and applied research on Markov decision processes, as well as the growing use of these models in ecology, economics, communications engineering, and other fields where outcomes are uncertain and sequential decision-making processes are needed. A timely response to this increased activity, Martin L. Puterman's new work provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models. It discusses all major research directions in the field, highlights many significant applications of Markov decision processes models, and explores numerous important topics that have previously been neglected or given cursory coverage in the literature. Markov Decision Processes focuses primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous-time discrete state models. The book is organized around optimality criteria, using a common framework centered on the optimality (Bellman) equation for presenting results. The results are presented in a "theorem-proof" format and elaborated on through both discussion and examples, including results that are not available in any other book. A two-state Markov decision process model, presented in Chapter 3, is analyzed repeatedly throughout the book and demonstrates many results and algorithms. Markov Decision Processes covers recent research advances in such areas as countable state space models with average reward criterion, constrained models, and models with risk sensitive optimality criteria. It also explores several topics that have received little or no attention in other books, including modified policy iteration, multichain models with average reward criterion, and sensitive optimality. In addition, a Bibliographic Remarks section in each chapter comments on relevant historic

read more

Citations
More filters

Algorithms and Representations for Reinforcement Learning

Yaakov Engel
TL;DR: This thesis introduces a new class of Reinforcement Learning algorithms, which leverage the power of a statistical set of tools known as Gaussian Processes, and offers viable solutions to some of the major limitations of current Rein reinforcement Learning methods.
Proceedings ArticleDOI

Cost-effective condition-based maintenance using markov decision processes

TL;DR: In this paper, the authors present a generalized condition-based maintenance (CBM) model that can be applied to a wide range of applications, including a stochastic deterioration process, a set of maintenance actions and their effects and a scheduled inspection policy that identifies the condition of deterioration.
Proceedings Article

Optimistic posterior sampling for reinforcement learning: worst-case regret bounds

TL;DR: In this article, the authors present an algorithm based on posterior sampling (aka Thompson sampling) that achieves near-optimal worst-case regret bounds when the underlying MDP is communicating with a finite, though unknown, diameter.
Proceedings Article

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games

TL;DR: This paper provides a novel and unified error propagation analysis in Lp-norm of three well-known algorithms adapted to Stochastic Games and shows that it can achieve a stationary policy which is 2γe+e′/(1-γ)2 -optimal.

A unifying framework for computational reinforcement learning theory

TL;DR: This thesis is that the KWIK learning model provides a flexible, modularized, and unifying way for creating and analyzing reinforcement-learning algorithms with provably efficient exploration and facilitates the development of new algorithms with smaller sample complexity, which have demonstrated empirically faster learning speed in real-world problems.
References
More filters
Book

Functional analysis

Walter Rudin
Book

Dynamic Programming

TL;DR: The more the authors study the information processing aspects of the mind, the more perplexed and impressed they become, and it will be a very long time before they understand these processes sufficiently to reproduce them.
Journal ArticleDOI

Finding Optimal (s, S) Policies Is About As Simple As Evaluating a Single Policy

TL;DR: A new algorithm for computing optimal ( s , S ) policies is derived based upon a number of new properties of the infinite horizon cost function c as well as a new upper bound for optimal order-up-to levels S * and a new lower bound for ideal reorder levels s *.
Related Papers (5)