scispace - formally typeset
Open AccessJournal ArticleDOI

Natural evaporation from open water, bare soil and grass

H. L. Penman
- 22 Apr 1948 - 
- Vol. 193, Iss: 1032, pp 120-145
TLDR
It is shown that a satisfactory account can be given of open water evaporation at four widely spaced sites in America and Europe, the results for bare soil receive a reasonable check in India, and application of theresults for turf shows good agreement with estimates of evapolation from catchment areas in the British Isles.
Abstract
Two theoretical approaches to evaporation from saturated surfaces are outlined, the first being on an aerodynamic basis in which evaporation is regarded as due to turbulent transport of vapour by a process of eddy diffusion, and the second being on an energy basis in which evaporation is regarded as one of the ways of degrading incoming radiation. Neither approach is new, but a combination is suggested that eliminates the parameter measured with most difficulty—surface temperature—and provides for the first time an opportunity to make theoretical estimates of evaporation rates from standard meteorological data, estimates that can be retrospective. Experimental work to test these theories shows that the aerodynamic approach is not adequate and an empirical expression, previously obtained in America, is a better description of evaporation from open water. The energy balance is found to be quite successful. Evaporation rates from wet bare soil and from turf with an adequate supply of water are obtained as fractions of that from open water, the fraction for turf showing a seasonal change attributed to the annual cycle of length of daylight. Finally, the experimental results are applied to data published elsewhere and it is shown that a satisfactory account can be given of open water evaporation at four widely spaced sites in America and Europe, the results for bare soil receive a reasonable check in India, and application of the results for turf shows good agreement with estimates of evaporation from catchment areas in the British Isles.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Crop evapotranspiration : guidelines for computing crop water requirements

TL;DR: In this paper, an updated procedure for calculating reference and crop evapotranspiration from meteorological data and crop coefficients is presented, based on the FAO Penman-Monteith method.
Journal ArticleDOI

On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters

TL;DR: In this article, the large-scale parameterization of the surface fluxes of sensible and latent heat is properly expressed in terms of energetic considerations over land while formulas of the bulk aerodynamic type are most suitahle over the sea.
Journal ArticleDOI

Investigating soil moisture-climate interactions in a changing climate: A review

TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.
Journal ArticleDOI

A review of drought concepts

TL;DR: In this paper, the authors provide a review of fundamental concepts of drought, classification of droughts, drought indices, historical Droughts using paleoclimatic studies, and the relation between DAs and large scale climate indices.
Journal ArticleDOI

Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island

TL;DR: In this article, the authors reviewed progress in urban climatology over the two decades since the first publication of the International Journal of Climatology (IJC) and highlighted the role of scale, heterogeneity, dynamic source areas for turbulent fluxes and the complexity introduced by the roughness sublayer over the tall, rigid roughness elements of cities.
References
More filters
Journal ArticleDOI

Physical and Dynamical Meteorolgy. By D. Brunt. Second edition. Pp. xxiv, 428. 25s. 1939. (Cambridge)

TL;DR: In this article, a sketch of the surface distribution of the meteorological elements over the globe is presented, along with some statistical and thermal relationships, and the transformations of energy in the atmosphere.