scispace - formally typeset
Open AccessJournal ArticleDOI

Optimal multi-channel cooperative sensing in cognitive radio networks

Rongfei Fan, +1 more
- 01 Mar 2010 - 
- Vol. 9, Iss: 3, pp 1128-1138
TLDR
In this paper, optimal multi-channel cooperative sensing strategies in cognitive radio networks are investigated and a polynomial-complexity algorithm is proposed to solve the problem optimally.
Abstract
In this paper, optimal multi-channel cooperative sensing strategies in cognitive radio networks are investigated. A cognitive radio network with multiple potential channels is considered. Secondary users cooperatively sense the channels and send the sensing results to a coordinator, in which energy detection with a soft decision rule is employed to estimate whether there are primary activities in the channels. An optimization problem is formulated, which maximizes the throughput of secondary users while keeping detection probability for each channel above a pre-defined threshold. In particular, two sensing modes are investigated: slotted-time sensing mode and continuous-time sensing mode. With a slotted-time sensing mode, the sensing time of each secondary user consists of a number of mini-slots, each of which can be used to sense one channel. The initial optimization problem is shown to be a nonconvex mixed-integer problem. A polynomial-complexity algorithm is proposed to solve the problem optimally. With a continuous-time sensing mode, the sensing time of each secondary user for a channel can be any arbitrary continuous value. The initial nonconvex problem is converted into a convex bilevel problem, which can be successfully solved by existing methods. Numerical results are presented to demonstrate the effectiveness of our proposed algorithms.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

A Survey of Wideband Spectrum Sensing Algorithms for Cognitive Radio Networks and Sub-Nyquist Approaches.

TL;DR: A survey of various wideband spectrum sensing approaches outlining their advantages and limitations is given; special attention is paid to approaches that utilise sub-Nyquist sampling techniques.

Coexistence and Energy Efficiency in Wireless Networks

TL;DR: Dynamic spectrum access has been recently proposed to increase the utilization of the licensed spectrum bands, and support the constantly growing volumes of mobile traffic in the modern society.
Journal ArticleDOI

Optimization of multiple-channel cooperative spectrum sensing with data fusion rule in cognitive radio networks

TL;DR: A multi-channel CSS optimization problem of joint spectrum sensing and SU assignment based on data fusion rule is formulated, which maximizes the total throughput of the Cognitive Radio Network subject to the constraints of probabilities of detection and false alarm.
Journal ArticleDOI

Jointly optimizing sensing time and resource allocation in multichannel cognitive radio networks

TL;DR: This paper studies how to jointly optimize sensing time and resource allocation to maximize the sum transmission rate of all CR users of a multichannel CR network and proposes an asymptotically optimal resource allocation algorithm.
Book ChapterDOI

Investigation of CRN Spectrum Sensing Techniques: A Scientific Survey

TL;DR: This paper breaks down the cooperative spectrum detecting techniques in CRN, a major part of cognitive radio networking that allows us to use the vacant frequency band.
References
More filters
Book

Convex Optimization

TL;DR: In this article, the focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them, and a comprehensive introduction to the subject is given. But the focus of this book is not on the optimization problem itself, but on the problem of finding the appropriate technique to solve it.
Journal ArticleDOI

Cognitive radio: brain-empowered wireless communications

TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Journal ArticleDOI

Sensing-Throughput Tradeoff for Cognitive Radio Networks

TL;DR: This paper designs the sensing duration to maximize the achievable throughput for the secondary network under the constraint that the primary users are sufficiently protected, and forms the sensing-throughput tradeoff problem mathematically, and uses energy detection sensing scheme to prove that the formulated problem indeed has one optimal sensing time which yields the highest throughput.
Journal ArticleDOI

Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework

TL;DR: An analytical framework for opportunistic spectrum access based on the theory of partially observable Markov decision process (POMDP) is developed and cognitive MAC protocols that optimize the performance of secondary users while limiting the interference perceived by primary users are proposed.
Related Papers (5)