scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Journal on Selected Areas in Communications in 2007"


Journal ArticleDOI
B. Rankov1, Armin Wittneben1
TL;DR: Two new half-duplex relaying protocols are proposed that avoid the pre-log factor one-half in corresponding capacity expressions and it is shown that both protocols recover a significant portion of the half- duplex loss.
Abstract: We study two-hop communication protocols where one or several relay terminals assist in the communication between two or more terminals. All terminals operate in half-duplex mode, hence the transmission of one information symbol from the source terminal to the destination terminal occupies two channel uses. This leads to a loss in spectral efficiency due to the pre-log factor one-half in corresponding capacity expressions. We propose two new half-duplex relaying protocols that avoid the pre-log factor one-half. Firstly, we consider a relaying protocol where a bidirectional connection between two terminals is established via one amplify-and-forward (AF) or decode-and-forward (DF) relay (two-way relaying). We also extend this protocol to a multi-user scenario, where multiple terminals communicate with multiple partner terminals via several orthogonalize-and-forward (OF) relay terminals, i.e., the relays orthogonalize the different two-way transmissions by a distributed zero-forcing algorithm. Secondly, we propose a relaying protocol where two relays, either AF or DF, alternately forward messages from a source terminal to a destination terminal (two-path relaying). It is shown that both protocols recover a significant portion of the half-duplex loss

1,728 citations


Journal ArticleDOI
TL;DR: An analytical framework for opportunistic spectrum access based on the theory of partially observable Markov decision process (POMDP) is developed and cognitive MAC protocols that optimize the performance of secondary users while limiting the interference perceived by primary users are proposed.
Abstract: We propose decentralized cognitive MAC protocols that allow secondary users to independently search for spectrum opportunities without a central coordinator or a dedicated communication channel. Recognizing hardware and energy constraints, we assume that a secondary user may not be able to perform full-spectrum sensing or may not be willing to monitor the spectrum when it has no data to transmit. We develop an analytical framework for opportunistic spectrum access based on the theory of partially observable Markov decision process (POMDP). This decision-theoretic approach integrates the design of spectrum access protocols at the MAC layer with spectrum sensing at the physical layer and traffic statistics determined by the application layer of the primary network. It also allows easy incorporation of spectrum sensing error and constraint on the probability of colliding with the primary users. Under this POMDP framework, we propose cognitive MAC protocols that optimize the performance of secondary users while limiting the interference perceived by primary users. A suboptimal strategy with reduced complexity yet comparable performance is developed. Without additional control message exchange between the secondary transmitter and receiver, the proposed decentralized protocols ensure synchronous hopping in the spectrum between the transmitter and the receiver in the presence of collisions and spectrum sensing errors

1,709 citations


Journal ArticleDOI
TL;DR: This work investigates whether efficiency and fairness can be obtained with self-enforcing spectrum sharing rules, and presents examples that illustrate that in many cases the performance loss due to selfish behavior is small.
Abstract: We study a spectrum sharing problem in an unlicensed band where multiple systems coexist and interfere with each other. Due to asymmetries and selfish system behavior, unfair and inefficient situations may arise. We investigate whether efficiency and fairness can be obtained with self-enforcing spectrum sharing rules. These rules have the advantage of not requiring a central authority that verifies compliance to the protocol. Any self-enforcing protocol must correspond to an equilibrium of a game. We first analyze the possible outcomes of a one shot game, and observe that in many cases an inefficient solution results. However, systems often coexist for long periods and a repeated game is more appropriate to model their interaction. In this repeated game the possibility of building reputations and applying punishments allows for a larger set of self-enforcing outcomes. When this set includes the optimal operating point, efficient, fair, and incentive compatible spectrum sharing becomes possible. We present examples that illustrate that in many cases the performance loss due to selfish behavior is small. We also prove that our results are tight and quantify the best achievable performance in a non-cooperative scenario

1,070 citations


Journal ArticleDOI
TL;DR: This work analyzes the sum-rate performance of a multi- antenna downlink system carrying more users than transmit antennas, with partial channel knowledge at the transmitter due to finite rate feedback, and shows that having more users reduces feedback load.
Abstract: We analyze the sum-rate performance of a multi- antenna downlink system carrying more users than transmit antennas, with partial channel knowledge at the transmitter due to finite rate feedback. In order to exploit multiuser diversity, we show that the transmitter must have, in addition to directional information, information regarding the quality of each channel. Such information should reflect both the channel magnitude and the quantization error. Expressions for the SINR distribution and the sum-rate are derived, and tradeoffs between the number of feedback bits, the number of users, and the SNR are observed. In particular, for a target performance, having more users reduces feedback load.

795 citations


Journal ArticleDOI
TL;DR: Narrow-band measurements of the mobile vehicle-to-vehicle propagation channel at 5.9 GHz are presented, under realistic suburban driving conditions in Pittsburgh, Pennsylvania, thereby enabling dynamic measurements of how large-scale path loss, Doppler spectrum, and coherence time depend on vehicle location and separation.
Abstract: This study presents narrow-band measurements of the mobile vehicle-to-vehicle propagation channel at 5.9 GHz, under realistic suburban driving conditions in Pittsburgh, Pennsylvania. Our system includes differential Global Positioning System (DGPS) receivers, thereby enabling dynamic measurements of how large-scale path loss, Doppler spectrum, and coherence time depend on vehicle location and separation. A Nakagami distribution is used for describing the fading statistics. The speed-separation diagram is introduced as a new tool for analyzing and understanding the vehicle-to-vehicle propagation environment. We show that this diagram can be used to model and predict channel Doppler spread and coherence time using vehicle speed and separation.

724 citations


Journal ArticleDOI
TL;DR: It is demonstrated that cooperation among stations in a wireless LAN (WLAN) can achieve both higher throughput and lower interference, and a reduction in the signal-to-interference ratio in a dense deployment of 802.11 access points is demonstrated.
Abstract: Due to the broadcast nature of wireless signals, a wireless transmission intended for a particular destination station can be overheard by other neighboring stations. A focus of recent research activities in cooperative communications is to achieve spatial diversity gains by requiring these neighboring stations to retransmit the overheard information to the final destination. In this paper we demonstrate that such cooperation among stations in a wireless LAN (WLAN) can achieve both higher throughput and lower interference. We present the design for a medium access control protocol called CoopMAC, in which high data rate stations assist low data rate stations in their transmission by forwarding their traffic. In our proposed protocol, using the overheard transmissions, each low data rate node maintains a table, called a CoopTable, of potential helper nodes that can assist in its transmissions. During transmission, each low data rate node selects either direct transmission or transmission through a helper node in order to minimize the total transmission time. Using analysis, simulation and testbed experimentation, we quantify the increase in the total network throughput, and the reduction in delay, if such cooperative transmissions are utilized. The CoopMAC protocol is simple and backward compatible with the legacy 802.11 system. In this paper, we also demonstrate a reduction in the signal-to-interference ratio in a dense deployment of 802.11 access points, which in some cases is a more important consequence of cooperation

688 citations


Journal ArticleDOI
TL;DR: This paper uses empirical vehicle traffic data measured on 1-80 freeway in California to develop a comprehensive analytical framework to study the disconnected network phenomenon and its network characteristics, and shows that, depending on the sparsity of vehicles or the market penetration rate of cars using Dedicated Short Range Communication technology, the network re-healing time can vary from a few seconds to several minutes.
Abstract: A vehicular ad hoc network (VANET) may exhibit a bipolar behavior, i.e., the network can either be fully connected or sparsely connected depending on the time of day or on the market penetration rate of the wireless communication devices. In this paper, we use empirical vehicle traffic data measured on 1-80 freeway in California to develop a comprehensive analytical framework to study the disconnected network phenomenon and its network characteristics. These characteristics shed light on the key routing performance metrics of interest in disconnected VANETs, such as the average time taken to propagate a packet to disconnected nodes (i.e., the re-healing time). Our results show that, depending on the sparsity of vehicles or the market penetration rate of cars using Dedicated Short Range Communication (DSRC) technology, the network re-healing time can vary from a few seconds to several minutes. This suggests that, for vehicular safety applications, a new ad hoc routing protocol will be needed as the conventional ad hoc routing protocols such as Dynamic Source Routing (DSR) and Ad Hoc On-Demand Distance Vector Routing (AODV) will not work with such long re-healing times. In addition, the developed analytical framework and its predictions provide valuable insights into the VANET routing performance in the disconnected network regime.

534 citations


Journal ArticleDOI
TL;DR: It is shown that for a cellular system employing orthogonal frequency-division multiple-access (OFDMA), the optimization of physical-layer transmission strategies can be done efficiently by introducing a set of pricing variables as weighting factors.
Abstract: This paper considers a wireless cooperative cellular data network with a base station and many subscribers in which the subscribers have the ability to relay information for each other to improve the overall network performance. For a wireless network operating in a frequency-selective slow-fading environment, the choices of relay node, relay strategy, and the allocation of power and bandwidth for each user are important design parameters. The design challenge is compounded further by the need to take user traffic demands into consideration. This paper proposes a centralized utility maximization framework for such a network. We show that for a cellular system employing orthogonal frequency-division multiple-access (OFDMA), the optimization of physical-layer transmission strategies can be done efficiently by introducing a set of pricing variables as weighting factors. The proposed solution incorporates both user traffic demands and the physical channel realizations in a cross-layer design that not only allocates power and bandwidth optimally for each user, but also selects the best relay node and best relay strategy (i.e. decode-and-forward vs. amplify-and-forward) for each source-destination pair

517 citations


Journal ArticleDOI
TL;DR: This paper proposes protocols, as components of a framework, for the identification and local containment of misbehaving or faulty nodes, and then for their eviction from the system, and shows that the distributed approach to contain nodes and contribute to their eviction is efficiently feasible and achieves a sufficient level of robustness.
Abstract: Vehicular networks (VNs) are emerging, among civilian applications, as a convincing instantiation of the mobile networking technology. However, security is a critical factor and a significant challenge to be met. Misbehaving or faulty network nodes have to be detected and prevented from disrupting network operation, a problem particularly hard to address in the life-critical VN environment. Existing networks rely mainly on node certificate revocation for attacker eviction, but the lack of an omnipresent infrastructure in VNs may unacceptably delay the retrieval of the most recent and relevant revocation information; this will especially be the case in the early deployment stages of such a highly volatile and large-scale system. In this paper, we address this specific problem. We propose protocols, as components of a framework, for the identification and local containment of misbehaving or faulty nodes, and then for their eviction from the system. We tailor our design to the VN characteristics and analyze our system. Our results show that the distributed approach to contain nodes and contribute to their eviction is efficiently feasible and achieves a sufficient level of robustness.

433 citations


Journal ArticleDOI
TL;DR: This paper addresses the problem of mitigating unauthorized tracking of vehicles based on their broadcast communications, to enhance the user location privacy in VANET with a scheme called AMOEBA, that provides location privacy by utilizing the group navigation of vehicles.
Abstract: Communication messages in vehicular ad hoc networks (VANET) can be used to locate and track vehicles. While tracking can be beneficial for vehicle navigation, it can also lead to threats on location privacy of vehicle user. In this paper, we address the problem of mitigating unauthorized tracking of vehicles based on their broadcast communications, to enhance the user location privacy in VANET. Compared to other mobile networks, VANET exhibits unique characteristics in terms of vehicular mobility constraints, application requirements such as a safety message broadcast period, and vehicular network connectivity. Based on the observed characteristics, we propose a scheme called AMOEBA, that provides location privacy by utilizing the group navigation of vehicles. By simulating vehicular mobility in freeways and streets, the performance of the proposed scheme is evaluated under VANET application constraints and two passive adversary models. We make use of vehicular groups for anonymous access to location based service applications in VANET, for user privacy protection. The robustness of the user privacy provided is considered under various attacks.

398 citations


Journal ArticleDOI
TL;DR: It is demonstrated that PCCP achieves efficient congestion control and flexible weighted fairness for both single-path and multi-path routing, as a result this leads to higher energy efficiency and better QoS in terms of both packet loss rate and delay.
Abstract: Congestion in wireless sensor networks not only causes packet loss, but also leads to excessive energy consumption. Therefore congestion in WSNs needs to be controlled in order to prolong system lifetime. In addition, this is also necessary to improve fairness and provide better quality of service (QoS), which is required by multimedia applications in wireless multimedia sensor networks. In this paper, we propose a novel upstream congestion control protocol for WSNs, called priority-based congestion control protocol (PCCP). Unlike existing work, PCCP innovatively measures congestion degree as the ratio of packet inter-arrival time along over packet service time. PCCP still introduced node priority index to reflect the importance of each sensor node. Based on the introduced congestion degree and node priority index, PCCP utilizes a cross-layer optimization and imposes a hop-by-hop approach to control congestion. We have demonstrated that PCCP achieves efficient congestion control and flexible weighted fairness for both single-path and multi-path routing, as a result this leads to higher energy efficiency and better QoS in terms of both packet loss rate and delay.

Journal ArticleDOI
TL;DR: In this article, an iterative waterfilling power allocation algorithm for Gaussian interference channels is investigated and the system is formulated as a non-cooperative game based on the measured interference powers, users maximize their own throughput by iteratively adjusting their power allocations.
Abstract: Iterative waterfilling power allocation algorithm for Gaussian interference channels is investigated The system is formulated as a non-cooperative game Based on the measured interference powers, the users maximize their own throughput by iteratively adjusting their power allocations The Nash equilib- rium in this game is a fixed point of such iterative algorithm Both synchronous and asynchronous power update are considered Some sufficient conditions under which the algorithm converges to the Nash equilibrium are derived

Journal ArticleDOI
TL;DR: R2 is a new streaming algorithm designed from scratch to incorporate random network coding with a randomized push algorithm, designed to improve the performance of live streaming in terms of initial buffering delays, resilience to peer dynamics, as well as reduced bandwidth costs on dedicated streaming servers, all of which are beyond the basic requirement of stable streaming playback.
Abstract: In information theory, it has been shown that network coding can effectively improve the throughput of multicast communication sessions in directed acyclic graphs. More practically, random network coding is also instrumental towards improving the downloading performance in BitTorrent-like peer-to-peer content distribution sessions. Live peer-to-peer streaming, however, poses unique challenges to the use of network coding, due to its strict timing and bandwidth constraints. In this paper, we revisit the complete spectrum in the design space of live peer-to-peer streaming protocols, with a sole objective of taking full advantage of random network coding. We present R2, our new streaming algorithm designed from scratch to incorporate random network coding with a randomized push algorithm. R2 is designed to improve the performance of live streaming in terms of initial buffering delays, resilience to peer dynamics, as well as reduced bandwidth costs on dedicated streaming servers, all of which are beyond the basic requirement of stable streaming playback. On an experimental testbed consisting of dozens of dual-CPU cluster servers, we thoroughly evaluate R2 with an actual implementation, real network traffic, and emulated peer upload capacities, in comparisons with a typical live streaming protocol (both without and with network coding), representing the current state-of-the-art in real-world streaming applications.

Journal ArticleDOI
TL;DR: This paper proposes a universal codebook design for correlated channels when channel statistical information is known at the transmitter that is robust to channel statistics and is implemented by maps that can rotate and scale spherical caps on the Grassmannian manifold.
Abstract: The full diversity gain provided by a multi-antenna channel can be achieved by transmit beamforming and receive combining. This requires the knowledge of channel state information (CSI) at the transmitter which is difficult to obtain in practice. Quantized beamforming where fixed codebooks known at both the transmitter and the receiver are used to quantize the CSI has been proposed to solve this problem. Most recent works focus attention on limited feedback codebook design for the uncorrelated Rayleigh fading channel. Such designs are sub-optimal when used in correlated channels. In this paper, we propose systematic codebook design for correlated channels when channel statistical information is known at the transmitter. This design is motivated by studying the performance of pure statistical beamforming in correlated channels and is implemented by maps that can rotate and scale spherical caps on the Grassmannian manifold. Based on this study, we show that even statistical beamforming is near-optimal if the transmitter covariance matrix is ill-conditioned and receiver covariance matrix is well-conditioned. This leads to a partitioning of the transmit and receive covariance spaces based on their conditioning with variable feedback requirements to achieve an operational performance level in the different partitions. When channel statistics are difficult to obtain at the transmitter, we propose a universal codebook design (also implemented by the rotation-scaling maps) that is robust to channel statistics. Numerical studies show that even few bits of feedback, when applied with our designs, lead to near perfect CSI performance in a variety of correlated channel conditions.

Journal ArticleDOI
TL;DR: This work derives the exact relationships that the component LDPC code profiles in the relay coding scheme must satisfy to act as constraints for the density evolution algorithm which is used to search for good relay code profiles.
Abstract: We propose Low Density Parity Check (LDPC) code designs for the half-duplex relay channel. Our designs are based on the information theoretic random coding scheme for decode-and-forward relaying. The source transmission is decoded with the help of side information in the form of additional parity bits from the relay. We derive the exact relationships that the component LDPC code profiles in the relay coding scheme must satisfy. These relationships act as constraints for the density evolution algorithm which is used to search for good relay code profiles. To speed up optimization, we outline a Gaussian approximation of density evolution for the relay channel. The asymptotic noise thresholds of the discovered relay code profiles are a fraction of a decibel away from the achievable lower bound for decode-and-forward relaying. With random component LDPC codes, the overall relay coding scheme performs within 1.2 dB of the theoretical limit.

Journal ArticleDOI
Jia Tang1, Xi Zhang1
TL;DR: The simulations and numerical results verify that the proposed physical-datalink cross-layer resource allocation scheme can efficiently support diverse QoS requirements over wireless relay networks and demonstrate the importance of deploying the dynamic resource allocation for stringent delay QoS guarantees.
Abstract: The authors propose a physical-datalink cross-layer resource allocation scheme over wireless relay networks for quality-of-service (QoS) guarantees. By integrating information theory with the concept of effective capacity, the proposed scheme aims at maximizing the relay network throughput subject to a given delay QoS constraint. This delay constraint is characterized by the so-called QoS exponent thetas, which is the only requested information exchanged between the physical layer and the datalink layer in our cross-layer design based scheme. Over both amplify-and-forwards (AF) and decode-and-forward (DF) relay networks; the authors develop the associated dynamic resource allocation algorithms for wireless multimedia communications. Over DF relay network, the authors also study a fixed power allocation scheme to provide QoS guarantees. The simulations and numerical results verify that our proposed cross-layer resource allocation can efficiently support diverse QoS requirements over wireless relay networks. Both AF and DF relays show significant superiorities over direct transmissions when the delay QoS constraints are stringent. On the other hand, the results demonstrate the importance of deploying the dynamic resource allocation for stringent delay QoS guarantees.

Journal ArticleDOI
TL;DR: The approach aims at improving the radio awareness with respect to stand alone scenario by using distributed detection theory for cooperative spectrum sensing in peer-to-peer cognitive networks.
Abstract: Cognitive radios is emerging in research laboratories as a promising wireless paradigm, which will integrate benefits of software defined radio with a complete aware communication behavior. To reach this goal many issues remain still open, such as powerful algorithms for sensing the external environment. This paper presents a further step in the direction of allowing cooperative spectrum sensing in peer-to-peer cognitive networks by using distributed detection theory. The approach aims at improving the radio awareness with respect to stand alone scenario as it is shown with theoretical and experimental results

Journal ArticleDOI
TL;DR: This paper demonstrates that, besides simplicity and robustness, with proper parameter settings, simple pull-based P2P streaming protocol is nearly optimal in terms of peer upload capacity utilization and system throughput even without intelligent scheduling and bandwidth measurement.
Abstract: Most of the real deployed peer-to-peer streaming systems adopt pull-based streaming protocol. In this paper, we demonstrate that, besides simplicity and robustness, with proper parameter settings, when the server bandwidth is above several times of the raw streaming rate, which is reasonable for practical live streaming system, simple pull-based P2P streaming protocol is nearly optimal in terms of peer upload capacity utilization and system throughput even without intelligent scheduling and bandwidth measurement. We also indicate that whether this near optimality can be achieved depends on the parameters in pull-based protocol, server bandwidth and group size. Then we present our mathematical analysis to gain deeper insight in this characteristic of pull-based streaming protocol. On the other hand, the optimality of pull-based protocol comes from a cost -tradeoff between control overhead and delay, that is, the protocol has either large control overhead or large delay. To break the tradeoff, we propose a pull-push hybrid protocol. The basic idea is to consider pull-based protocol as a highly efficient bandwidth-aware multicast routing protocol and push down packets along the trees formed by pull-based protocol. Both simulation and real-world experiment show that this protocol is not only even more effective in throughput than pull-based protocol but also has far lower delay and much smaller overhead. And to achieve near optimality in peer capacity utilization without churn, the server bandwidth needed can be further relaxed. Furthermore, the proposed protocol is fully implemented in our deployed GridMedia system and has the record to support over 220,000 users simultaneously online.

Journal ArticleDOI
TL;DR: In this paper, the capacity of opportunistic communication in the presence of dynamic and distributed spectral activity is investigated, where the time varying spectral holes sensed by a cognitive transmitter are correlated but not identical to those sensed by the cognitive receiver.
Abstract: We investigate the capacity of opportunistic communication in the presence of dynamic and distributed spectral activity, ie, when the time varying spectral holes sensed by the cognitive transmitter are correlated but not identical to those sensed by the cognitive receiver We develop a two switch model that captures the localized spectral activity estimates at the transmitter and receiver The information theoretic framework of communication with side information is employed to characterize the capacity of the cognitive link with both causal and non-causal side information at the transmitter and/or the receiver These capacity results are used to determine the benefits of any feedforward and feedback information We find that cognitive radio capacity is robust to the uncertainties arising out of distributed and dynamic spectral environments, even when the communication occurs in bursts of only 3-5 symbols The capacity depends strongly on the correlation of the local spectral environment at the cognitive transmitter and receiver

Journal ArticleDOI
Aria Nosratinia, T.E. Hunter1
TL;DR: This work points out a simple, static selection strategy that guarantees diversity n+1 for all transmissions, and considers centralized control strategies and study the additional gains that arise from a central control, under various amounts of information being available to the central controller.
Abstract: Various results to date have demonstrated the advantages of one or several relay nodes assisting transmissions in a wireless network. In many practical scenarios, not all nodes in the network are simultaneously involved in every transmission; therefore, protocols are needed to form groups or subsets of nodes for the purposes of cooperation. We consider this problem in the context of regenerative nodes and non-altruistic cooperation (all nodes have data of their own to transmit). For a network-wide diversity advantage, the protocol must provide each transmitting node with enough "partners" that can decode its message with high-enough probability. Assuming that the nodes cannot communicate their control decisions (distributed scenario), and that each node chooses to help n other nodes, we point out a simple, static selection strategy that guarantees diversity n+1 for all transmissions. We then consider centralized control strategies and study the additional gains that arise from a central control, under various amounts of information being available to the central controller.

Journal ArticleDOI
TL;DR: It can be shown that the introduction of the virtual referee does not increase the complexity of the networks and is in charge of monitoring and improving the outcome of non-cooperative competition for resources among the distributed users.
Abstract: In this paper, a distributive non-cooperative game is proposed to perform sub-channel assignment, adaptive modulation, and power control for multi-cell multi-user orthogonal frequency division multiplexing access (OFDMA) networks. Each individual user's goal is to minimize his/her own transmitted power in a distributed manner under the constraints that the desirable rate is achieved and the transmitted power is bounded. The pure non-cooperative game may result in non-convergence or some undesirable Nash Equilibriums with low system and individual performances. To enhance the performances, a virtual referee is introduced to the networks and is in charge of monitoring and improving the outcome of non-cooperative competition for resources among the distributed users. If the game outcome is not desirable, either the required transmission rates should be reduced or some users should be prevented from using some radio resources such as sub-channels, so that the rest of users can share the limited resources more efficiently. Moreover, it can be shown that the introduction of the virtual referee does not increase the complexity of the networks. From the simulation results in a two-cell case, the proposed scheme reduces the transmitted power by 80% and 25% compared with the fixed channel assignment algorithm and the iterative water-filling algorithm in the literature, respectively. The achievable rate can be improved by 10%. In a multi-cell case, the proposed scheme can have up to 40% power reduction compared with the iterative water-filling algorithm when the co-channel interferences are severe.

Journal ArticleDOI
TL;DR: This paper proposes three basic building blocks for spectral-agile systems, namely spectrum opportunity discovery, spectrum opportunity management, and spectrum usage coordination, and develops protocols for each blocks, and proposes protocols that can improve the throughput of an IEEE 802.11 wireless LAN.
Abstract: Static spectrum allocation prohibits radio devices from using spectral bands designated for others. As a result, some bands are under-utilized while other bands are over-populated with radio devices. To remedy this problem, the concept of spectrum agility has been considered so as to enable devices to opportunistically utilize others' spectral bands. In order to help realize this concept, we establish an analytical model to derive performance metrics, including spectrum utilization and spectrum-access blocking time in spectral-agile communication systems. We then propose three basic building blocks for spectral-agile systems, namely spectrum opportunity discovery, spectrum opportunity management, and spectrum usage coordination, and develop protocols for each blocks. These protocols are integrated with the IEEE 802.11 protocol, and simulated using ns-2 to evaluate the protocol overhead. The simulation results show that our proposed protocols can improve the throughput of an IEEE 802.11 wireless LAN by 90% for the simulated scenarios, and the improvements matched well our analytical model. These results demonstrate the great potential of using spectrum agility for improving spectral utilization in an efficient, distributed, and autonomous manner

Journal ArticleDOI
TL;DR: In this article, the authors developed a generalized notion of SNR for the class of memoryless relay functions, which leads to the novel concept of minimum mean squared uncorrelated error (MMSUE) estimation.
Abstract: We explore the SNR-optimal relay functionality in a mernoryless relay network, i.e. a network where, during each channel use, the signal transmitted by a relay depends only on the last received symbol at that relay. We develop a generalized notion of SNR for the class of memoryless relay functions. The solution to the generalized SNR optimization problem leads to the novel concept of minimum mean squared uncorrelated error (MMSUE) estimation. For the elemental case of a single relay, we show that MMSUE estimate is a scaled version of the MMSE estimate. This scheme, that we call estimate and forward (EF), performs better than the best of amplify and forward (AF) and demodulate and forward (DF) in both parallel and serial relay networks. We determine that AF is near-optimal at low transmit power in a parallel network, while DF is near-optimal at high transmit power in a serial network. For hybrid networks that contain both serial and parallel elements, the advantage of EF over the best of AF and DF is found to be significant. Error probabilities are provided to substantiate the performance gain obtained through SNR optimality. We also show that, for Gaussian inputs, AF, DF and EF are identical

Journal ArticleDOI
TL;DR: The price dynamics in a competitive market consisting of spectrum agile network service providers and users, where multiple self interested spectrum providers operating with different technologies and costs compete for potential customers is explored.
Abstract: We explore the price dynamics in a competitive market consisting of spectrum agile network service providers and users. Here, multiple self interested spectrum providers operating with different technologies and costs compete for potential customers. Different buyers or consumers may evaluate the same seller differently depending on their applications, operating technologies and locations. Two different buyer populations, the quality-sensitive and the price-sensitive are investigated, and the resulting collective price dynamics are studied using a combination of analysis and simulations. Various scenarios are considered regarding the nature and accuracy of information available to the sellers. A myopically optimal strategy is studied when full information is available, while a stochastic learning based strategy is considered when the information is limited. Cooperating groups may be formed among the sellers which will in-turn influence the group profit for those participants. Free riding phenomenon is observed under certain circumstances

Journal ArticleDOI
TL;DR: The vehicular information transfer protocol (VITP), a location- aware, application-layer, communication protocol designed to support a distributed service infrastructure over vehicular ad- hoc networks, is introduced and the results demonstrate the viability and effectiveness of VITP in providing location-aware services over VANETs.
Abstract: Recent advances in wireless inter-vehicle communication systems enable the establishment of vehicular ad-hoc networks (VANET) and create significant opportunities for the deployment of a wide variety of applications and services to vehicles. In this work, we investigate the problem of developing services that can provide car drivers with time-sensitive information about traffic conditions and roadside facilities. We introduce the vehicular information transfer protocol (VITP), a location- aware, application-layer, communication protocol designed to support a distributed service infrastructure over vehicular ad- hoc networks. We describe the key design concepts of the VITP protocol and infrastructure. We provide an extensive simulation study of VITP performance on large-scale vehicular networks under realistic highway and city traffic conditions. Our results demonstrate the viability and effectiveness of VITP in providing location-aware services over VANETs.

Journal ArticleDOI
TL;DR: Content is proactively pushed to peers, and persistently stored before the actual peer-to-peer transfers, and the initial content placement increases content availability and improves the use of peer uplink bandwidth.
Abstract: We propose Push-to-Peer, a peer-to-peer system to cooperatively stream video. The main departure from previous work is that content is proactively pushed to peers, and persistently stored before the actual peer-to-peer transfers. The initial content placement increases content availability and improves the use of peer uplink bandwidth. Our specific contributions are: (i) content placement and associated pull policies that allow the optimal use of uplink bandwidth; (ii) performance analysis of such policies in controlled environments such as DSL networks under ISP control; (iii) a distributed load balancing strategy for selection of serving peers.

Journal ArticleDOI
TL;DR: This paper remotely harvest buffer maps from many peers and then process these buffer maps to estimate the video playback quality, and presents results for network-wide playback continuity, startup latency, playback lags among peers, and chunk propagation patterns.
Abstract: This paper explores how to remotely monitor network-wide quality in mesh-pull P2P live streaming systems. Peers in such systems advertise to each other buffer maps which summarize the chunks of the video stream that they currently have cached and make available for sharing. We demonstrate how buffer maps can be exploited to monitor network-wide quality. We show that the information provided in a peer's advertised buffer map correlates with that peer's viewing-continuity and startup latency. Given this correlation, we remotely harvest buffer maps from many peers and then process these buffer maps to estimate the video playback quality. We apply this methodology to a popular P2P live streaming system, namely, PPLive. To harvest buffer maps, we build a buffer-map crawler and also deploy passive sniffing nodes. We process the harvested buffer maps and present results for network-wide playback continuity, startup latency, playback lags among peers, and chunk propagation patterns. The results show that this methodology can provide reasonably accurate estimates of ongoing video playback quality throughout the network.

Journal ArticleDOI
TL;DR: It is demonstrated by numerical results that the proposed optimum relay-precoders and decoders improve the performance considerably and work in a fashion of channel selection.
Abstract: We jointly optimize the relay-precoders and decoders with full or partial channel side information (CSI) in a cooperative network. Specifically, three different CSI assumptions are considered: 1) full CSI at the destination terminal and the relay terminals; 2) full CSI at the destination terminal and partial CSI at the relay terminals; 3) partial CSI at the destination terminal and the relay terminals. We show that, under the assumption of full CSI at the destination terminal and the relay terminals, the optimum relay-precoder is the cooperative transmission beamforming and the optimum decoder is a maximum ratio combiner. Under the two partial CSI assumptions, the optimum relay-precoders and decoders work in a fashion of channel selection. It is demonstrated that the proposed optimum relay-precoders and decoders improve the performance considerably

Journal ArticleDOI
TL;DR: The VCG-Kelly mechanism is proposed, which is obtained by composing the one-dimensional signaling idea of Kelly with the VCG mechanism, providing socially optimal allocation for strategic buyers at the Nash equilibrium point.
Abstract: rdquoThe VCG-Kelly mechanism is proposed, which is obtained by composing the communication efficient, one- dimensional signaling idea of Kelly with the VCG mechanism, providing efficient allocation for strategic buyers at Nash equilibrium points. It is shown that the revenue to the seller can be maximized or minimized using a particular one-dimensional family of surrogate valuation functions.

Journal ArticleDOI
TL;DR: VMesh, a distributed peer-to-peer video-on-demand (VoD) streaming scheme which efficiently supports random seeking functionality, is proposed which achieves low startup and seeking latency under random user interactivity and peer join/leave which is a crucial requirement in an interactive VoD system.
Abstract: Provisioning random access functions in peer-to-peer on-demand video streaming is challenging, due to not only the asynchronous user interactivity but also the unpredictability of group dynamics. In this paper, we propose VMesh, a distributed peer-to-peer video-on-demand (VoD) streaming scheme which efficiently supports random seeking functionality. In VMesh, videos are divided into segments and stored at peers' local storage in a distributed manner. An overlay mesh is built upon peers to support random forward/backward seek, pause and restart during playback. Our scheme takes advantage of the large aggregate storage capacity of peers to improve the segment supply so as to support efficient interactive commands in a scalable manner. Unlike previous work based on "cache-and-relay" mechanism, in our scheme, user interactivity such as random seeking performed by a peer does not break the connections between it and its children, and hence our scheme achieves better playback continuity. Through simulation, we show that our system achieves low startup and seeking latency under random user interactivity and peer join/leave which is a crucial requirement in an interactive VoD system.