scispace - formally typeset
Open AccessBook

Optimization and nonsmooth analysis

Reads0
Chats0
TLDR
The Calculus of Variations as discussed by the authors is a generalization of the calculus of variations, which is used in many aspects of analysis, such as generalized gradient descent and optimal control.
Abstract
1. Introduction and Preview 2. Generalized Gradients 3. Differential Inclusions 4. The Calculus of Variations 5. Optimal Control 6. Mathematical Programming 7. Topics in Analysis.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Principles of Robot Motion: Theory, Algorithms, and Implementations

TL;DR: In this paper, the mathematical underpinnings of robot motion are discussed and a text that makes the low-level details of implementation to high-level algorithmic concepts is presented.
Journal ArticleDOI

Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods ∗

TL;DR: This review begins by briefly summarizing the history of direct search methods and considering the special properties of problems for which they are well suited, then turns to a broad class of methods for which the underlying principles allow general-ization to handle bound constraints and linear constraints.
Journal ArticleDOI

A nonsmooth version of Newton's method

TL;DR: It is shown that the gradient function of the augmented Lagrangian forC2-nonlinear programming is semismooth, and the extended Newton's method can be used in the augmentedlagrangian method for solving nonlinear programs.
Book

Aggregation Functions: A Guide for Practitioners

TL;DR: A broad introduction into the topic of aggregation functions, and provides a concise account of the properties and the main classes of such functions, including classical means, medians, ordered weighted averaging functions, Choquet and Sugeno integrals, triangular norms, conorms and copulas, uninorms, nullnorms, and symmetric sums.
Journal ArticleDOI

An overview of bilevel optimization

TL;DR: This paper presents fields of application, focus on solution approaches, and makes the connection with MPECs (Mathematical Programs with Equilibrium Constraints), a branch of mathematical programming of both practical and theoretical interest.