scispace - formally typeset
Proceedings ArticleDOI

Parallel hybrid algorithm for solution in electrical impedance equation

TLDR
This work proposed a novel algorithm, which employs a regularization technique for the stability and the parallel computing is used to obtain the solution faster, and the found solution is used in the inverse problem for the approximation employing the Finite Element Method.
Abstract
This work is dedicated to the analysis of the forward and the inverse problem to obtain a better approximation to the Electrical Impedance Tomography equation. In this case, we employ for the forward problem the numerical method based on the Taylor series in formal power and for the inverse problem the Finite Element Method. For the analysis of the forward problem, we proposed a novel algorithm, which employs a regularization technique for the stability, additionally the parallel computing is used to obtain the solution faster; this modification permits to obtain an efficient solution of the forward problem. Then, the found solution is used in the inverse problem for the approximation employing the Finite Element Method. The algorithms employed in this work are developed in structural programming paradigm in C++, including parallel processing; the time run analysis is performed only in the forward problem because the Finite Element Method due to their high recursive does not accept parallelism. Some examples are performed for this analysis, in which several conductivity functions are employed for two different cases: for the analytical cases: the exponential and sinusoidal functions are used, and for the geometrical cases the circle at center and five disk structure are revised as conductivity functions. The Lebesgue measure is used as metric for error estimation in the forward problem, meanwhile, in the inverse problem PSNR, SSIM, MSE criteria are applied, to determine the convergence of both methods.

read more

Citations
References
More filters
Journal ArticleDOI

On an inverse boundary value problem

TL;DR: A. P. Calderon as discussed by the authors published by the Brazilian Mathematical Society (SBM) in ATAS of SBM (Rio de Janeiro), pp. 65-73, 1980.
Journal ArticleDOI

Calderon's inverse conductivity problem in the plane

TL;DR: In this paper, it was shown that the Dirichlet to Neumann map for the equation ∇·σ∇u = 0 in a two-dimensional domain uniquely determines the bounded measurable constant.
Related Papers (5)