scispace - formally typeset
Open AccessPosted Content

Practical Full Resolution Learned Lossless Image Compression

Reads0
Chats0
TLDR
The first practical learned lossless image compression system, L3C, is proposed and it outperforms the popular engineered codecs, PNG, WebP and JPEG 2000, and finds that learning the auxiliary representation is crucial and outperforms predefined auxiliary representations such as an RGB pyramid significantly.
Abstract
We propose the first practical learned lossless image compression system, L3C, and show that it outperforms the popular engineered codecs, PNG, WebP and JPEG 2000. At the core of our method is a fully parallelizable hierarchical probabilistic model for adaptive entropy coding which is optimized end-to-end for the compression task. In contrast to recent autoregressive discrete probabilistic models such as PixelCNN, our method i) models the image distribution jointly with learned auxiliary representations instead of exclusively modeling the image distribution in RGB space, and ii) only requires three forward-passes to predict all pixel probabilities instead of one for each pixel. As a result, L3C obtains over two orders of magnitude speedups when sampling compared to the fastest PixelCNN variant (Multiscale-PixelCNN). Furthermore, we find that learning the auxiliary representation is crucial and outperforms predefined auxiliary representations such as an RGB pyramid significantly.

read more

Citations
More filters
Proceedings Article

Generating Diverse High-Fidelity Images with VQ-VAE-2

TL;DR: In this article, the authors explore the use of vector quantized variational autoencoder (VQ-VAE) models for large scale image generation and demonstrate that a multi-scale hierarchical organization with powerful priors over the latent codes is able to generate samples with quality that rivals that of state of the art Generative Adversarial Networks on multifaceted datasets such as ImageNet, while not suffering from GAN's known shortcomings such as mode collapse and lack of diversity.
Posted Content

Learned Image Compression with Discretized Gaussian Mixture Likelihoods and Attention Modules

TL;DR: This paper proposes to use discretized Gaussian Mixture Likelihoods to parameterize the distributions of latent codes, which can achieve a more accurate and flexible entropy model and achieves a state-of-the-art performance against existing learned compression methods.
Journal ArticleDOI

End-to-End Learnt Image Compression via Non-Local Attention Optimization and Improved Context Modeling

TL;DR: An end-to-end learnt lossy image compression approach, which is built on top of the deep nerual network (DNN)-based variational auto-encoder (VAE) structure with Non-Local Attention optimization and Improved Context modeling (NLAIC).
Journal ArticleDOI

Nonlinear Transform Coding

TL;DR: A novel variant of entropy-constrained vector quantization, based on artificial neural networks, as well as learned entropy models, is introduced to assess the empirical rate–distortion performance of nonlinear transform coding methods.
Proceedings Article

Integer Discrete Flows and Lossless Compression

TL;DR: This work introduces a flow-based generative model for ordinal discrete data called Integer Discrete Flow (IDF): a bijective integer map that can learn rich transformations on high-dimensional data and introduces a flexible transformation layer called integer discrete coupling.
References
More filters
Journal ArticleDOI

A mathematical theory of communication

TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Book

Elements of information theory

TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Posted Content

Rethinking Atrous Convolution for Semantic Image Segmentation

TL;DR: The proposed `DeepLabv3' system significantly improves over the previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2012 semantic image segmentation benchmark.
Related Papers (5)