scispace - formally typeset
Open AccessJournal ArticleDOI

Reasoning about temporal relations: The tractable subalgebras of Allen's interval algebra

Reads0
Chats0
TLDR
This article provides the final step in the classification of complexity for satisfiability problems over constraints expressed in Allen's interval algebra, and shows that this algebra contains exactly eighteen maximal tractable subalgebras, and reasoning in any fragment not entirely contained in one of these subalagbras is NP-complete.
Abstract
Allen's interval algebra is one of the best established formalisms for temporal reasoning. This article provides the final step in the classification of complexity for satisfiability problems over constraints expressed in this algebra. When the constraints are chosen from the full Allen's algebra, this form of satisfiability problem is known to be NP-complete. However, eighteen tractable subalgebras have previously been identified; we show here that these subalgebras include all possible tractable subsets of Allen's algebra. In other words, we show that this algebra contains exactly eighteen maximal tractable subalgebras, and reasoning in any fragment not entirely contained in one of these subalgebras is NP-complete. We obtain this dichotomy result by giving a new uniform description of the known maximal tractable subalgebras, and then systematically using a general algebraic technique for identifying maximal subalgebras with a given property.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Handbook of Constraint Programming

TL;DR: Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas.
Journal ArticleDOI

Classifying the Complexity of Constraints Using Finite Algebras

TL;DR: It is shown that any set of relations used to specify the allowed forms of constraints can be associated with a finite universal algebra and how the computational complexity of the corresponding constraint satisfaction problem is connected to the properties of this algebra is explored.
Book ChapterDOI

Qualitative spatial representation and reasoning

TL;DR: The challenge of qualitative spatial reasoning (QSR) is to provide calculi that allow a machine to represent and reason with spatial entities without resort to the traditional quantitative techniques prevalent in, for example, computer graphics or computer vision communities.
Journal ArticleDOI

The complexity of temporal constraint satisfaction problems

TL;DR: This work presents a complete complexity classification of the constraint satisfaction problem (CSP) for temporal constraint languages: if the constraint language is contained in one out of nine temporal constraint language, then the CSP can be solved in polynomial time; otherwise, the C SP is NP-complete.
References
More filters
Book

Computers and Intractability: A Guide to the Theory of NP-Completeness

TL;DR: The second edition of a quarterly column as discussed by the authors provides a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman & Co., San Francisco, 1979.
Journal Article

Maintaining knowledge about temporal intervals

James F. Allen
- 01 Mar 1991 - 
TL;DR: An interval-based temporal logic is introduced, together with a computationally effective reasoning algorithm based on constraint propagation, which is notable in offering a delicate balance between space and time.
Journal ArticleDOI

Maintaining knowledge about temporal intervals

TL;DR: In this paper, an interval-based temporal logic is introduced, together with a computationally effective reasoning algorithm based on constraint propagation, which is notable in offering a delicate balance between time and space.
Proceedings ArticleDOI

The complexity of satisfiability problems

TL;DR: An infinite class of satisfiability problems is considered which contains these two particular problems as special cases, and it is shown that every member of this class is either polynomial-time decidable or NP-complete.