scispace - formally typeset
Open AccessBook

Robot Motion Planning

Reads0
Chats0
TLDR
This chapter discusses the configuration space of a Rigid Object, the challenges of dealing with uncertainty, and potential field methods for solving these problems.
Abstract
1 Introduction and Overview.- 2 Configuration Space of a Rigid Object.- 3 Obstacles in Configuration Space.- 4 Roadmap Methods.- 5 Exact Cell Decomposition.- 6 Approximate Cell Decomposition.- 7 Potential Field Methods.- 8 Multiple Moving Objects.- 9 Kinematic Constraints.- 10 Dealing with Uncertainty.- 11 Movable Objects.- Prospects.- Appendix A Basic Mathematics.- Appendix B Computational Complexity.- Appendix C Graph Searching.- Appendix D Sweep-Line Algorithm.- References.

read more

Citations
More filters
Journal ArticleDOI

Cooperative mobile robotics: antecedents and directions

TL;DR: A critical survey of existing works in cooperative robotics is given and open problems in this field are discussed, emphasizing the various theoretical issues that arise in the study of cooperative robotics.
Journal ArticleDOI

Fast Marching Methods

James A. Sethian
- 01 Jun 1999 - 
TL;DR: The development of Fast Marching Methods is reviewed, including the theoretical and numerical underpinnings; details of the computational schemes, including higher order versions; and examples of the techniques in a collection of different areas are demonstrated.
Journal ArticleDOI

Coverage for robotics – A survey of recent results

TL;DR: This paper surveys recent results in coverage path planning, a new path planning approach that determines a path for a robot to pass over all points in its free space, and organizes the coverage algorithms into heuristic, approximate, partial-approximate and exact cellular decompositions.
Book ChapterDOI

Optimal and efficient path planning for partially-known environments

TL;DR: A new algorithm, D*, is introduced, capable of planning paths in unknown, partially known, and changing environments in an efficient, optimal, and complete manner.
Journal ArticleDOI

Modeling and control of formations of nonholonomic mobile robots

TL;DR: This paper addresses the control of a team of nonholonomic mobile robots navigating in a terrain with obstacles while maintaining a desired formation and changing formations when required, using graph theory.