scispace - formally typeset
Open AccessProceedings Article

Runtime Neural Pruning

Ji Lin, +3 more
- Vol. 30, pp 2181-2191
Reads0
Chats0
TLDR
A Runtime Neural Pruning (RNP) framework which prunes the deep neural network dynamically at the runtime and preserves the full ability of the original network and conducts pruning according to the input image and current feature maps adaptively.
Abstract
In this paper, we propose a Runtime Neural Pruning (RNP) framework which prunes the deep neural network dynamically at the runtime. Unlike existing neural pruning methods which produce a fixed pruned model for deployment, our method preserves the full ability of the original network and conducts pruning according to the input image and current feature maps adaptively. The pruning is performed in a bottom-up, layer-by-layer manner, which we model as a Markov decision process and use reinforcement learning for training. The agent judges the importance of each convolutional kernel and conducts channel-wise pruning conditioned on different samples, where the network is pruned more when the image is easier for the task. Since the ability of network is fully preserved, the balance point is easily adjustable according to the available resources. Our method can be applied to off-the-shelf network structures and reach a better tradeoff between speed and accuracy, especially with a large pruning rate.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

AMC: AutoML for Model Compression and Acceleration on Mobile Devices

TL;DR: This paper proposes AutoML for Model Compression (AMC) which leverages reinforcement learning to efficiently sample the design space and can improve the model compression quality and achieves state-of-the-art model compression results in a fully automated way without any human efforts.
Posted Content

Rethinking the Value of Network Pruning

TL;DR: It is found that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization, and the need for more careful baseline evaluations in future research on structured pruning methods is suggested.
Proceedings ArticleDOI

TSM: Temporal Shift Module for Efficient Video Understanding

TL;DR: Temporal Shift Module (TSM) as mentioned in this paper shifts part of the channels along the temporal dimension to facilitate information exchanged among neighboring frames, which can be inserted into 2D CNNs to achieve temporal modeling at zero computation and zero parameters.
Posted Content

TSM: Temporal Shift Module for Efficient Video Understanding

TL;DR: A generic and effective Temporal Shift Module (TSM) that can achieve the performance of 3D CNN but maintain 2D CNN’s complexity and is extended to online setting, which enables real-time low-latency online video recognition and video object detection.
Posted Content

AMC: AutoML for Model Compression and Acceleration on Mobile Devices.

TL;DR: This paper proposed AutoML for Model Compression (AMC) which leverages reinforcement learning to provide the model compression policy, which outperforms conventional rule-based compression policy by having higher compression ratio, better preserving the accuracy and freeing human labor.
References
More filters
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Journal ArticleDOI

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: This work introduces a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals and further merge RPN and Fast R-CNN into a single network by sharing their convolutionAL features.
Related Papers (5)