scispace - formally typeset

Proceedings ArticleDOI

SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks

24 Jun 2017-Vol. 45, Iss: 2, pp 27-40

Abstract: Convolutional Neural Networks (CNNs) have emerged as a fundamental technology for machine learning. High performance and extreme energy efficiency are critical for deployments of CNNs, especially in mobile platforms such as autonomous vehicles, cameras, and electronic personal assistants. This paper introduces the Sparse CNN (SCNN) accelerator architecture, which improves performance and energy efficiency by exploiting the zero-valued weights that stem from network pruning during training and zero-valued activations that arise from the common ReLU operator. Specifically, SCNN employs a novel dataflow that enables maintaining the sparse weights and activations in a compressed encoding, which eliminates unnecessary data transfers and reduces storage requirements. Furthermore, the SCNN dataflow facilitates efficient delivery of those weights and activations to a multiplier array, where they are extensively reused; product accumulation is performed in a novel accumulator array. On contemporary neural networks, SCNN can improve both performance and energy by a factor of 2.7x and 2.3x, respectively, over a comparably provisioned dense CNN accelerator.
Citations
More filters

Journal ArticleDOI
20 Nov 2017-
Abstract: Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems. This article aims to provide a comprehensive tutorial and survey about the recent advances toward the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic codesigns, being proposed in academia and industry. The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the tradeoffs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.

1,804 citations


Book ChapterDOI
Yihui He1, Ji Lin2, Zhijian Liu2, Hanrui Wang2  +2 moreInstitutions (3)
08 Sep 2018-
TL;DR: This paper proposes AutoML for Model Compression (AMC) which leverages reinforcement learning to efficiently sample the design space and can improve the model compression quality and achieves state-of-the-art model compression results in a fully automated way without any human efforts.
Abstract: Model compression is an effective technique to efficiently deploy neural network models on mobile devices which have limited computation resources and tight power budgets. Conventional model compression techniques rely on hand-crafted features and require domain experts to explore the large design space trading off among model size, speed, and accuracy, which is usually sub-optimal and time-consuming. In this paper, we propose AutoML for Model Compression (AMC) which leverages reinforcement learning to efficiently sample the design space and can improve the model compression quality. We achieved state-of-the-art model compression results in a fully automated way without any human efforts. Under 4\(\times \) FLOPs reduction, we achieved 2.7% better accuracy than the hand-crafted model compression method for VGG-16 on ImageNet. We applied this automated, push-the-button compression pipeline to MobileNet-V1 and achieved a speedup of 1.53\(\times \) on the GPU (Titan Xp) and 1.95\(\times \) on an Android phone (Google Pixel 1), with negligible loss of accuracy.

661 citations


Posted Content
Yihui He1, Ji Lin2, Zhijian Liu2, Hanrui Wang2  +2 moreInstitutions (3)
Abstract: Model compression is a critical technique to efficiently deploy neural network models on mobile devices which have limited computation resources and tight power budgets. Conventional model compression techniques rely on hand-crafted heuristics and rule-based policies that require domain experts to explore the large design space trading off among model size, speed, and accuracy, which is usually sub-optimal and time-consuming. In this paper, we propose AutoML for Model Compression (AMC) which leverage reinforcement learning to provide the model compression policy. This learning-based compression policy outperforms conventional rule-based compression policy by having higher compression ratio, better preserving the accuracy and freeing human labor. Under 4x FLOPs reduction, we achieved 2.7% better accuracy than the handcrafted model compression policy for VGG-16 on ImageNet. We applied this automated, push-the-button compression pipeline to MobileNet and achieved 1.81x speedup of measured inference latency on an Android phone and 1.43x speedup on the Titan XP GPU, with only 0.1% loss of ImageNet Top-1 accuracy.

537 citations


Posted Content
Michael H. Zhu, Suyog Gupta1Institutions (1)
Abstract: Model pruning seeks to induce sparsity in a deep neural network's various connection matrices, thereby reducing the number of nonzero-valued parameters in the model. Recent reports (Han et al., 2015; Narang et al., 2017) prune deep networks at the cost of only a marginal loss in accuracy and achieve a sizable reduction in model size. This hints at the possibility that the baseline models in these experiments are perhaps severely over-parameterized at the outset and a viable alternative for model compression might be to simply reduce the number of hidden units while maintaining the model's dense connection structure, exposing a similar trade-off in model size and accuracy. We investigate these two distinct paths for model compression within the context of energy-efficient inference in resource-constrained environments and propose a new gradual pruning technique that is simple and straightforward to apply across a variety of models/datasets with minimal tuning and can be seamlessly incorporated within the training process. We compare the accuracy of large, but pruned models (large-sparse) and their smaller, but dense (small-dense) counterparts with identical memory footprint. Across a broad range of neural network architectures (deep CNNs, stacked LSTM, and seq2seq LSTM models), we find large-sparse models to consistently outperform small-dense models and achieve up to 10x reduction in number of non-zero parameters with minimal loss in accuracy.

366 citations


Proceedings ArticleDOI
02 Jun 2018-
TL;DR: This paper describes the NPU architecture for Project Brainwave, a production-scale system for real-time AI, and achieves more than an order of magnitude improvement in latency and throughput over state-of-the-art GPUs on large RNNs at a batch size of 1.5 teraflops.
Abstract: Interactive AI-powered services require low-latency evaluation of deep neural network (DNN) models—aka ""real-time AI"". The growing demand for computationally expensive, state-of-the-art DNNs, coupled with diminishing performance gains of general-purpose architectures, has fueled an explosion of specialized Neural Processing Units (NPUs). NPUs for interactive services should satisfy two requirements: (1) execution of DNN models with low latency, high throughput, and high efficiency, and (2) flexibility to accommodate evolving state-of-the-art models (e.g., RNNs, CNNs, MLPs) without costly silicon updates. This paper describes the NPU architecture for Project Brainwave, a production-scale system for real-time AI. The Brainwave NPU achieves more than an order of magnitude improvement in latency and throughput over state-of-the-art GPUs on large RNNs at a batch size of 1. The NPU attains this performance using a single-threaded SIMD ISA paired with a distributed microarchitecture capable of dispatching over 7M operations from a single instruction. The spatially distributed microarchitecture, scaled up to 96,000 multiply-accumulate units, is supported by hierarchical instruction decoders and schedulers coupled with thousands of independently addressable high-bandwidth on-chip memories, and can transparently exploit many levels of fine-grain SIMD parallelism. When targeting an FPGA, microarchitectural parameters such as native datapaths and numerical precision can be "synthesis specialized" to models at compile time, enabling atypically high FPGA performance competitive with hardened NPUs. When running on an Intel Stratix 10 280 FPGA, the Brainwave NPU achieves performance ranging from ten to over thirty-five teraflops, with no batching, on large, memory-intensive RNNs.

332 citations


References
More filters

Proceedings ArticleDOI
Kaiming He1, Xiangyu Zhang1, Shaoqing Ren1, Jian Sun1Institutions (1)
27 Jun 2016-
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

93,356 citations


Proceedings Article
03 Dec 2012-
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,871 citations


Proceedings Article
Karen Simonyan1, Andrew Zisserman1Institutions (1)
01 Jan 2015-
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,857 citations


Journal ArticleDOI
Yann LeCun1, Yann LeCun2, Yoshua Bengio3, Geoffrey E. Hinton4  +1 moreInstitutions (5)
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

33,931 citations


Proceedings ArticleDOI
Christian Szegedy1, Wei Liu2, Yangqing Jia1, Pierre Sermanet1  +5 moreInstitutions (3)
07 Jun 2015-
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

29,453 citations


Network Information
Related Papers (5)
27 Jun 2016

Kaiming He, Xiangyu Zhang +2 more

24 Jun 2017

Norman P. Jouppi, Cliff Young +74 more

03 Dec 2012

Alex Krizhevsky, Ilya Sutskever +1 more

04 Sep 2014

Karen Simonyan, Andrew Zisserman

Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20221
2021179
2020224
2019179
2018137
201714