scispace - formally typeset
Open AccessJournal ArticleDOI

Semantic labeling in very high resolution images via a self-cascaded convolutional neural network

Reads0
Chats0
TLDR
A novel deep model with convolutional neural networks (CNNs), i.e., an end-to-end self-cascaded network (ScasNet), for confusing manmade objects and fine-structured objects, ScasNet improves the labeling coherence with sequential global- to-local contexts aggregation.
Abstract
Semantic labeling for very high resolution (VHR) images in urban areas, is of significant importance in a wide range of remote sensing applications. However, many confusing manmade objects and intricate fine-structured objects make it very difficult to obtain both coherent and accurate labeling results. For this challenging task, we propose a novel deep model with convolutional neural networks (CNNs), i.e., an end-to-end self-cascaded network (ScasNet). Specifically, for confusing manmade objects, ScasNet improves the labeling coherence with sequential global-to-local contexts aggregation. Technically, multi-scale contexts are captured on the output of a CNN encoder, and then they are successively aggregated in a self-cascaded manner. Meanwhile, for fine-structured objects, ScasNet boosts the labeling accuracy with a coarse-to-fine refinement strategy. It progressively refines the target objects using the low-level features learned by CNN’s shallow layers. In addition, to correct the latent fitting residual caused by multi-feature fusion inside ScasNet, a dedicated residual correction scheme is proposed. It greatly improves the effectiveness of ScasNet. Extensive experimental results on three public datasets, including two challenging benchmarks, show that ScasNet achieves the state-of-the-art performance.

read more

Citations
More filters
Journal ArticleDOI

ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data

TL;DR: In this article, a novel deep learning architecture, ResUNet-a, is proposed for the task of semantic segmentation of monotemporal very high-resolution aerial images.
Journal ArticleDOI

Unmanned Aerial Vehicle for Remote Sensing Applications—A Review

TL;DR: This paper performs a critical review on RS tasks that involve UAV data and their derived products as their main sources including raw perspective images, digital surface models, and orthophotos and focuses on solutions that address the “new” aspects of the U drone data including ultra-high resolution; availability of coherent geometric and spectral data; and capability of simultaneously using multi-sensor data for fusion.
Journal ArticleDOI

Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery

TL;DR: A detailed investigation of state-of-the-art deep learning tools for classification of complex wetland classes using multispectral RapidEye optical imagery for wetland mapping in Canada finds InceptionResNetV2 is consistently found to be superior compared to all other convnets, suggesting the integration of Inception and ResNet modules is an efficient architecture for classifying complex remote sensing scenes such as wetlands.
Journal ArticleDOI

A review of deep learning methods for semantic segmentation of remote sensing imagery

TL;DR: A summary of the fundamental deep neural network architectures and the most recent developments of deep learning methods for semantic segmentation of remote sensing imagery including non-conventional data such as hyperspectral images and point clouds are reviewed.
Journal ArticleDOI

UAVid: A semantic segmentation dataset for UAV imagery

TL;DR: UAVid as mentioned in this paper is a new high-resolution UAV semantic segmentation dataset as a complement, which brings new challenges, including large scale variation, moving object recognition and temporal consistency preservation.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book ChapterDOI

U-Net: Convolutional Networks for Biomedical Image Segmentation

TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Related Papers (5)